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ABSTRACT

Climate change is considered amongst the most severe threats to terrestrial and aquatic
ecosystems globally. Ecosystems in the southwestern United States have specifically been impacted by
intense drought conditions since 2000. Higher temperatures combined with altered precipitation stresses
many ecosystems; however, ecosystem specific responses to such stressors may vary. Here, the effects of
climate change on semi-arid ecosystems are analyzed for some of the most vulnerable ecosystems in the

southwestern United States: lacustrine, riparian, and dryland ecosystems.

Lakes and reservoirs in arid environments often serve as drinking water sources and recreational
areas where high water quality is essential. Climate change may decrease water quality by shifting
phytoplankton community structures to favor bloom forming and toxin producing species. In this chapter,
I analyzed phytoplankton community compositions in Lake Mead, Nevada-Arizona, to detect trends in
past communities and create predictive models for future communities. Results indicated stable
community structures, apart from restricted shallow locations where temperature or phosphorus had
increased. This study highlights the current buffering capacity of large, oligotrophic reservoirs to maintain
stable phytoplankton communities even in the presence of environmental change, but also highlights

potential rapid community shifts once this capacity is passed.

Riparian ecosystems are generally believed to be buffered from drought as many trees are
phreatophytes with roots extending to groundwater. Recent observations of regional riparian woodland
dieback and mortality suggest this ecosystem might be more vulnerable to climate change than previously
believed. Understanding drivers of the mortality is important as riparian woodlands harvest high
biodiversity, improve water quality, and aid in flood control. In this chapter, I studied riparian woodlands
at sites in California, Nevada, Arizona, and New Mexico to construct a conceptual model explaining the

timing, regionality, and local occurrences of mortality through a sequence of extreme hydrological events:
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intensified drought and flooding. Drought can reduce shallow root activity, affecting the ability of riparian

trees to deal with high groundwater levels during wet periods.

Dryland ecosystems cover approximately 40 percent of the Earth’s surface and contain various
vegetation patterns. Patterns may emerge prior to the ecosystem reaching its tipping point, after which
rapid shift in ecosystem states occurs which can lead to desertification. It is therefore important to
understand drivers of pattern formation. In this chapter, I studied soil moisture as driver of vegetation
patterns created by the western harvester ant, Pogonomyrmex occidentalis. Patterns increased soil
moisture inside the ant created vegetation pattern by reducing moisture lost through transpiration. The
vegetation pattern can disappear following increases in aridity and ant colony mortality, which decreases

plant and animal diversity, making the ecosystem more vulnerable to change.
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CHAPTER 1 - INTRODUCTION

Climate change is considered as one of the most severe threats to terrestrial and aquatic
ecosystems globally (Rosenzweig et al., 2007; Ormerod et al., 2010; Li et al., 2018; Griffith and Gobler,
2020). While severe climatic changes have occurred in the past, for example during glacial-interglacial
cycles, present climate change occurs at a much faster rate than most previous changes (Portner et al.,

2022).

Climate change in the southwestern United States has rapidly intensified drought conditions.
Since 2000, droughts have become hotter and drier, with the period of 2000-2022 classified as the driest
period in 1,400 years, also referred to as a Megadrought (Cook et al., 2018; Williams et al., 2022;
Alizadeh et al., 2023). Drought conditions are predicted to persist throughout the twenty-first century,
with recent studies suggesting the region is moving to a drier climate (Overpeck and Udall, 2020; Wahl et
al., 2022). The effects of climate change in the southwestern United States are visible everywhere; lakes
and reservoirs are near their lowest elevations ever recorded (United States Bureau of Reclamation,
2023), snowpack volumes and river streamflow have drastically decreased (Harpold et al., 2012;
Woodhouse et al., 2016; Bass et al., 2023), the intensity of droughts and wildfires has increased (Williams
et al., 2019; Overpeck and Udall, 2020), and precipitation events have become more erratic, leading to

more frequent flooding (Swain et al., 2018).

The effects of climate change span across many ecosystems found in the southwestern United
States. Climate change affects ecosystems through for example temperature and precipitation changes
(Malhi et al., 2020). Responses to such changes are often ecosystem dependent. Certain ecosystems are
more resilient to environmental change and can return to their original state after disturbance (Li et al.,
2018). Other ecosystems might already operate near their tipping point of rapid ecosystem change, such

that a small change in environmental conditions can cause a rapid ecosystem shift (Van De Koppel and



Rietkerk, 2004; Rietkerk et al., 2004). It is therefore important to study the effects of climate change on

(semi)-arid ecosystems using an ecosystem specific approach.

In this dissertation, I will study three ecosystems that are believed to be among the most sensitive
to climate change: lacustrine, riparian, and dryland ecosystems (Rood et al., 2000; Reynolds et al., 2007;

Adrian et al., 2009; Woolway et al., 2020; Williams et al., 2022).

Lakes and reservoirs in (semi)-arid regions often serve as important sources for drinking water
and as recreational areas (Ding et al., 2014; Hannoun et al., 2021). Climate change can negatively impact
water quality in such waterbodies if the phytoplankton community structure shifts to favor proliferation of
bloom and toxin forming species (Rosenzweig et al., 2007; Ho et al., 2019). A growing need therefore
exists to study and predict water quality and phytoplankton community changes in reservoirs in arid
environments. In this chapter, I investigate 17 years of phytoplankton community structure data and
chlorophyll a concentrations in Lake Mead combined with quantitative water quality data including
nutrients, temperature, and water clarity to analyze effects of environmental change on phytoplankton
communities. Additionally, I evaluate the use of machine learning for creating reliable models to predict

total phytoplankton biovolume and community structures.

Riparian ecosystems typically cover only a small percentage of land surface yet harbor a
disproportionally high biodiversity in arid environments (Stevens et al., 1977; Naiman et al., 1993),
improve water quality (Naiman and Décamps, 1997), and aid in erosion and flood control (Simon and
Collison, 2002; Thomas and Nisbet, 2007). Climate change can result in forest mortality, which is well
documented for many non-riparian forests globally (Creeden et al., 2014; Hammond et al., 2022).
However, recent observations of riparian woodland dieback and mortality at sites in Nevada and
California suggest riparian woodlands might be more vulnerable to climate change than previously
believed. In this chapter, I present a conceptual model to explain the occurrence of riparian woodland
mortality by analyzing long-term trends in riparian woodland health combined with drought,

precipitation, and topographic data.



Dryland ecosystems cover approximately 40% of the Earth’s surface (Safriel et al., 2005), and are
home to more than 2 billion people (Adeel et al., 2005). Vegetation patterns ranging from stripes to gaps
and spots are a common phenomenon in dryland ecosystems. Previous research indicates vegetation
patterns emerge prior to the ecosystem reaching its tipping point. Understanding drivers of pattern
formation is therefore essential to predict ecosystem change. In this chapter, I study soil moisture as
driver for a vegetation pattern created by the Western Harvester ant, Pogonomyrmex occidentalis, through
field measurements, numerical simulations, and remote sensing. The vegetation pattern may disappear
following increases in aridity and ant colony mortality. This can result in loss of plant and animal

diversity, making the ecosystem more vulnerable to rapid state change.

Understanding how individual ecosystems respond to altered climatic conditions is essential for
understanding future biological and ecological change, assisting management decisions, and aiding

conservation efforts.
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CHAPTER 2 - LACUSTRINE ECOSYSTEMS

Stable phytoplankton community compositions in Lake Mead (Nevada-Arizona, USA) during
two decades of severe drought

Prepared for submission to Ecosystem Science and Ecotechnology by

Charlotte van der Nagel, Deena Hannoun, and Todd Tietjen

2.1 Abstract

Water quality in Lake Mead, a large reservoir on the Colorado River that serves as a drinking
water source in the southwestern United States, is generally high with low nutrient and chlorophyll-a
concentrations. This is despite both the inflow of highly-treated wastewater since the 1960s and rapid
water level decline since 2000 due to the combination of the ongoing Megadrought and basin-wide
consumptive use. However, environmental change may shift phytoplankton communities. This can
negatively impact water quality and the aquatic ecosystem if cyanobacteria abundance increases,
potentially increasing bloom and toxin occurrences. Here, 17 years of phytoplankton community structure
and chlorophyll a concentrations in Lake Mead were combined with quantitative water quality data
including nutrients, temperature, and water clarity to analyze effects of environmental change on
phytoplankton communities. Cyanobacteria abundance was hypothesized to have increased throughout
the reservoir; however, results indicated stable community structures, apart from restricted shallow
locations where temperature or phosphorus had increased. This study highlights the current buffering
capacity of large, oligotrophic reservoirs to maintain stable phytoplankton communities even in the
presence of environmental change, but also highlights potential community shifts once this capacity is

passed. Machine learning models were evaluated for predicting changes in phytoplankton community



structures. Models predicted changes in total phytoplankton biovolume and chlorophyll a concentrations
confidently within input parameter boundaries. However, prediction of peak biovolume contained large
prediction uncertainty, stressing the need for including uncertainty analysis when communicating forecast

results.

2.2 Introduction

Lake Mead is a large, meso-oligotrophic reservoir on the Colorado River in the southwestern
United States. Maintaining high water quality is important as the reservoir functions as a drinking water
source, recreational area, and anthropogenic ecological habitat home to the endangered razorback sucker
(Xyrauchen texanus) (Hickey, 2010; Ding et al., 2014; Hannoun et al., 2021). Phytoplankton blooms can
alter water quality by changing nutrient availability, releasing toxins, and depleting dissolved oxygen
levels through microbial degradation upon bloom death (Elliott, 2012; Granéli & Turner, 2006; Hansson
et al., 2007; Paerl et al., 2001). Large-scale blooms in Lake Mead are rare (Ding et al., 2014) and
phytoplankton community structures remain stable inter-annually (Beaver et al., 2018). However,
Microcystis spp. has been observed in Lake Mead, including a bloom of toxin-producing M. aeruginosa
in 2015 (Beaver et al., 2018). Environmental changes can shift phytoplankton communities (De Senerpont
Domis et al., 2007; Winder and Sommer, 2012), potentially decreasing water quality if proliferation of

bloom forming and toxin producing species is favored.

Phytoplankton in Lake Mead may be affected by climate change, drought, and inflow of highly
treated wastewater. Lake levels in Lake Mead have decreased rapidly since 2000 due to runoff decline in
the Colorado River basin caused by reduced seasonal snowpacks (Heldmyer et al., 2023; Bass et al.,
2023) and overallocation of water resources (Wheeler et al., 2022). Drought and climate warming
increase water temperatures, prolong stratification, lengthen the growing season, and increase nutrient
concentrations as dilution in hypolimnion decreases and mineralization from sediments increases (Zohary
and Ostrovsky, 2011; Butcher et al., 2015; Mosley, 2015; Woolway et al., 2020, 2021). These changes

8



may shift the phytoplankton structure and increase total biomass. Increased water temperatures and
nutrient concentrations have been linked to increased abundance of cyanobacteria, including toxin-
producing species (Paerl and Huisman, 2008; O’Neil et al., 2012; Paerl and Otten, 2013). Population
growth of the neighboring Las Vegas metropolitan area since the 1960s can also shift the phytoplankton
composition by increasing nutrient concentrations through discharge of nutrient-rich highly treated
wastewater into Lake Mead through the Las Vegas Wash (the Wash) (Holdren and Turner, 2010). Wash
flow is predicted to further increase following future population growth (Hannoun and Tietjen, 2023).
While daily loading limits have been maintained, increased Wash discharge introduces additional

nutrients into Lake Mead and could shift the future phytoplankton structure.

Machine learning can aid in predicting changes in phytoplankton community structures. Machine
learning has been used to predict chlorophyll a (Yajima and Derot, 2017; Zhang et al., 2021), total
phytoplankton biomass (Liu et al., 2023), and individual phytoplankton groups (Rao et al., 2021; Liu et
al., 2023) using environmental and water quality parameters such as temperature and nutrients. However,
most models are based on one to two years of data, while evaluation of long-term phytoplankton
community change requires long-term datasets (Zhi et al., 2021; Woelmer et al., 2022). Additionally, the
seasonally and inter-annually varying nature of phytoplankton communities combined with the
simplification of models can cause large model uncertainty (Niu et al., 2015), yet uncertainty
quantification is absent from most published studies. Here, 17 years of phytoplankton community
structures, environmental, and water quality data including water temperature, nutrients and Secchi depth
are analyzed to evaluate 1) if drought has impacted water quality and the stability of the phytoplankton
community structure in Lake Mead, 2) spatial variability in phytoplankton communities throughout the
reservoir, and 3) the performance and uncertainty of machine learning models to predict phytoplankton
based on three target variables: chlorophyll a, total phytoplankton biovolume and biovolume of major
phytoplankton groups. Phytoplankton communities are hypothesized to vary significantly throughout the

reservoir and to have shifted locally in response to water quality changes, for example near the nutrient-



rich Wash inflow. Phytoplankton is hypothesized to be best predicted using broad target variables such as

chlorophyll a as opposed to more specific target variables such as phytoplankton groups.

2.3 Material and methods

2.3.1 Study area

Phytoplankton communities, hydrological, and water quality parameters were studied for Lake
Mead, a reservoir impounded by the Hoover Dam on the Colorado River, along the border of Nevada and
Arizona (Fig. 2.1). The reservoir currently operates at 32% capacity, at an elevation of 322m, 48 m down
from its elevation in 2000 (U.S. Bureau of Reclamation, 2023, accessed July 26, 2023). Lake Mead
consists of various interconnected basins and arms (Fig. 2.1). The Colorado River enters through the
Colorado River Arm and travels west through Gregg and Temple Basins, towards Virgin Basin. The
Virgin and Muddy Rivers enter through the Overton Arm and flow south to Virgin Basin. The Overton
and Colorado River arm combine in Virgin Basin and flow west towards Boulder Basin, the most

downstream located basin, east of Las Vegas.

The Colorado River flowing out of Grand Canyon constitutes 97% of inflow into Lake Mead
(LaBounty and Burns, 2005); this water is limited in ortho-phosphorus and colder than the ambient lake
temperature, causing it to enter the reservoir as an inter- or underflow (Holdren and Turner, 2010). 2-3%
of inflow comes from the Wash, in Boulder Basin (Holdren and Turner, 2010); this water contains
elevated levels of nutrients from treated wastewater effluent and serves as main bioavailable nutrient
source for Lake Mead algal communities (Ding et al., 2014). Improved wastewater treatment processes
since the early 2000s have significantly reduced phosphorus loading: by 2009, bioavailable phosphorus in
the Las Vegas Bay and Boulder Basin were down to 2 pg/L, a reduction of 98% from 1970-1980 (Rosen
et al., 2012). The remaining inflow into Lake Mead originates from the combined inflow of the Muddy

and Virgin Rivers in the north (Fig. 2.1). Flow in these rivers is in part drainage from agriculture and
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rangeland and characterized by slightly higher nutrients than ambient lake water (Holdren and Turner,

2010).

Phytoplankton community structure and quantitative water quality data were obtained from nine
sampling sites throughout Lake Mead. Stations were named based on their geographical location
regarding river arms and basins (Fig. 2.1; Fig. S2.1 for inter-agency names). The sampling site called Las
Vegas Wash Confluence (Wash Confl.) is located at the Wash-Lake Mead confluence. The position of this
site changes temporally following lake level decline. Sampling site Inner Las Vegas Bay (Inner Bay) is
located 6.7 km from the original Wash inflow, but currently located almost at the same location as the

Wash Confluence.
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Figure 2.1. Lake Mead, including inflows, outflows, basins, river arms, and sampling stations. June 2023
lake level elevation is marked as dark blue contour line, previous lake elevations are shown as grey

contour lines.

2.3.2 Data collection

Water samples were analyzed for total phytoplankton biovolume, community structure, and water
quality parameters including temperature, total phosphorus (TP), total nitrogen (TN), Secchi depth,
conductivity, and pH. Samples were collected biweekly for Boulder Basin sites and monthly for
remaining monitoring stations. Water samples for phytoplankton analysis were collected by the Southern

Nevada Water Authority (SNWA). Water quality samples were collected either by SNWA, the United
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States Bureau of Reclamation, or the City of Las Vegas. Phytoplankton and water quality data were

collected from 2002-2019 for Boulder Basin, and from 2012-2019 for remaining basins.

2.3.2.1 Phytoplankton community structure and chlorophyll a

Water samples for phytoplankton and chlorophyll a analysis were collected from an integrated
sample from 0-6 m depth. Subsamples for biovolume analysis were preserved in a glutaraldehyde solution
to final concentration of 0.25-0.5% upon collection and stored on ice. Triplicate permanent slide mounts
were prepared by capturing algal cells on a membrane filter and mounting the filter in HPMA resin
(Crumpton, 1987). All slides were analyzed for taxonomic identification and biovolume by Dr. Ann St.
Amand (Phycotech Inc., St. Joseph, Michigan) using compound microscopes with appropriate
magnification. A minimum of 400 natural units and 15 fields at 400x magnification were counted, until
the standard error of the mean was below 10%. The average dimensions of phytoplankton cells were used
to calculate the biovolume in mm?/L by approximating cell morphology by regular geometric shapes as

described in Hillebrand et al. (1999).

Samples for chlorophyll @ were filtered on a Whatman GF/C filter upon collection and stored on
ice. Analysis was performed using a dual beam UV/VIS spectrophotometer according to U.S. EPA
method 446.0 (Arar, 1997). Chlorophyll a was calculated as ug/L following the trichromatic equations of

Jeffrey & Humphrey (1975).

2.3.2.2 Water quality and hydrological data

Water samples for TN and TP were collected as composite samples from 0-6 m using a flexible
hose and stored on ice upon collection. Sample analysis was performed by the Clark County Water
Reclamation District from 2000-2003, by Montgomery Watson Harza (MWH) Laboratories from 2003-
2005, and by the Southern Nevada Water Authority after 2005. TN (mg/L) analysis was performed by
pyrolysis and chemiluminescence detection using a total nitrogen analyzer (Shimadzu TNM-1) in a total
organic carbon series (Shimadzu TOC-VCSH), according to the ASTM D5176 protocol. TP (mg/L)

analysis was performed using the automated ascorbic acid method using a segmented flow analyzer (Seal
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Analytical AA3), according to the standard method SM4500-P B for sample preparation and SM4500-P F
for analysis. Detection limits for TN were 0.5 mg/L prior to May 2016, and 0.1 mg/L after May 2016.
Detection limits for TP were 0.01 mg/L prior to November 2007, and 0.001 mg/L after November 2007.

Values below the detection limit were calculated as the detection limit divided by the square root of two.

Profiles of water temperature (°C), conductivity (uS/cm), and pH were measured using a
multiparameter sonde (various manufacturers over the years) with accuracies of =0.1°C, £0.5%, and +0.1
for temperature, conductivity, and pH, respectively. Surface layer (0-5m) averages were used for the
statistical analyses of this study. Water transparency was measured using Secchi disks (Wetzel and Likens,

2000).

Wash and Colorado River flow rates (m?/s) were obtained from the United States Geological
Survey (USGS) for 2002-2022. The Wash flow monitoring station (09419800) is located below Lake Las
Vegas, near the confluence of the Wash into Lake Mead. The Colorado River flow monitoring station
(09404200) is located near Peach Springs, Arizona. Daily lake elevation data were obtained from the U.S.

Bureau of Reclamation.

2.3.3 Statistical analyses

2.3.3.1 Trend analysis

To test the hypothesis that phytoplankton biovolume and water quality parameters have
significantly changed, I analyzed trends using the seasonal Mann-Kendall (MK) test. This test assesses for
consistent upward or downward seasonal trends, with the overall trend calculated by summing each
seasonal statistic (Hirsch et al., 1982). Magnitude of trends (Theil-Sen slopes) were calculated as the
annual rate of change of each water quality parameter at every monitoring station. Trend tests were
performed on phytoplankton and water quality data from 2005-2018 to avoid bias from higher nutrient

loading into Boulder Basin prior to 2005. Analyses were performed in RStudio (v4.2.2; R Core Team,
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2022) using the kendallSeasonalTrendTest function of the EnvStats package (v2.8.1; Millard, 2013) and a

significance level of 0.05.

2.3.3.2 Variance and correlation analysis

To test the hypothesis that water quality varies between monitoring stations, I analyzed significant
differences in water quality parameters using one-way analysis of variance (ANOVA). The analysis was
carried out in MATLAB using the function anoval. Additionally, I evaluated the relationship between
hydrodynamical and water quality parameters, using Spearman correlation analysis. This analysis tests
correlation without making assumptions about parameter distributions (Spearman, 1961; Hauke and
Kossowski, 2011). The analysis was carried out in RStudio using the function cor with method spearman

with significance levels of 0.01 and 0.05.

2.3.3.3 Clustering

To test the hypothesis that phytoplankton varies spatially throughout Lake Mead, I used cluster
analysis to evaluate how different monitoring stations can be grouped together. Chlorophyll @ was used
for clustering purposes instead of total biovolume as it provided consistent clustering results when
comparing different clustering algorithms, whereas total biovolume caused erratic results when
comparing clustering algorithms. Cluster analysis was performed using the k-means algorithm (Lloyd,
1982), using the average chlorophyll a concentration between 2005-2018 for each monitoring station. The
optimal number of clusters was determined by calculating the Akaike Information Criterion (AIC) for

each number of clusters possible (Eq. 2.1),

AIC=Ysumd?+2in (Equation 2.1)

where sumd is the observation-to-centroid distance, i is the number of clusters used, and 7 is the number

of stations. The optimal number of clusters was characterized by the lowest AIC. Cluster analysis was
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carried out using the kmeans function of the Statistics and Machine Learning Toolbox in MATLAB

(v2022b; MathWorks, 2022).

2.3.3.4 Machine learning

To test the hypothesis that model performance for predicting phytoplankton varies depending on
target variable, I constructed machine learning models for five different target variables. Models were
constructed for chlorophyll 4, total biovolume, and biovolume of diatoms (Bacillariophyta), green algae
(Chlorophyta), and cyanobacteria (Cyanophyta), using the random forest (RF) algorithm, using the
Treebagger function of the Statistics and Machine Learning Toolbox in MATLAB. This algorithm reduces
overfitting by averaging outputs from multiple decision trees (Breiman, 2001). Models were constructed
using water temperature, TP, Secchi depth, conductivity, and lake elevation as input variables. These
variables were chosen because the initial four parameters most importantly influence phytoplankton
growth in Lake Mead (Liebig, 1843; Ding et al., 2014), and lake elevation reflects drought conditions.
Input and output data for all stations were aggregated to create a lake wide model. This data was
normalized and divided into a training, testing, and validation dataset to minimize overfitting (Lever et
al., 2016; Chicco, 2017). The training dataset contained 70% of data from 2002-2016; the validation
dataset contained 30% of data from 2002-2016. The testing dataset consisted of all data from 2017-2018,
to evaluate model prediction capabilities. The validation dataset was used to optimize RF algorithm
hyperparameters: 1) number of trees grown, ranging from 1 to 5000, 2) minimum number of leaf node
observations, ranging from 1 to 20, and 3) number of predictor variables for each decision split, ranging
from 1 to 5. Hyperparameters were optimized by evaluating RF models with combinations of
hyperparameter values to minimize model error using the Bayesian optimization function bayesopt of the
Statistics and Machine Learning Toolbox in MATLAB. Sensitivity analysis was conducted by evaluating
how the output variable of each model was affected by changes in input variables, yielding the relative
importance of each input variable. This analysis was carried out on the training dataset. The testing

dataset was used to evaluate model performance and uncertainty. Uncertainty analysis quantified
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variability in model predictions by calculating response quantiles based on the distribution of the
predicted outcome. Distributions are obtained by running input data through all trees in the RF.
Uncertainty analysis was carried out using the QuantilePredict function of the Statistics and Machine

Learning Toolbox in MATLAB and a 95% confidence interval (Meinshausen, 2006).

2.4. Results

In this study, I analyzed 17 years of phytoplankton community structures, environmental, and
water quality data in Lake Mead. First, I calculated trends and differences in water quality parameters
between monitoring stations. Second, I analyzed trends and spatial variability in the phytoplankton
community structure throughout the reservoir. Last, I used machine learning to evaluate the performance
and uncertainty of models constructed for predicting phytoplankton based on three target variables:

chlorophyll a, total phytoplankton biovolume, and biovolume of major phytoplankton groups.

2.4.1 Water quality parameters

Hydrodynamical and water quality parameters differed significantly between monitoring stations
in Lake Mead (Fig. 2.2, S2.2-8; Table S2.1). Sites near the Wash inflow (Wash Confl. and Inner Bay)
showed highest TP and TN, with medians of 41.0 pg/L TP and 3.6 mg/L TN for the Wash Confluence site
while nutrient concentrations were low for remaining locations, with medians of 7.1 pg/L TP and 0.73
mg/L TN. Chlorophyll a varied significantly throughout Lake Mead, with a median of 1.4 pg/L, and
standard deviation of 7.2 pg/L (min = 0 pg/L, max = 90.3 pg/L, n = 2921). Highest chlorophyll a
occurred at the Wash Confluence, and rapidly decreased moving away from the confluence to Sentinel
Island. Chlorophyll a was also elevated near the inflow of the Colorado River (CR blw confl.). Surface
water temperature varied little throughout the reservoir, with slightly higher temperatures near the Wash

inflow. Conductivity was highest at the Wash inflow, and lowest at the Colorado River inflow.
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Figure 2.2. Summary of water quality and hydrological parameters at Lake Mead monitoring locations.
Each violin plot displays data distribution (shaded area), mean (symbol x), interquartile range between the
25" and 75" data percentiles (box), and individual datapoints (dots or bold line if dots are close together).
Lake elevation, Wash (LVW) and CR inflow are displayed as monthly averaged timeseries.
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Trends in water quality and hydrological parameters were analyzed using seasonal Mann-Kendall
tests (Table 2.1). Chlorophyll a significantly increased at all stations except the Upper Outflow and Lower
Overton, and Secchi depth significantly decreased at all stations except the Wash Confluence.
Conductivity significantly decreased in Lake Mead over the analyzed period, consistent with efforts to
reduce salinity in the Colorado River Basin (Rumsey et al., 2021). Sample collection occurred most
frequently in summer and fall, and least frequently in winter (Fig. S2.9). TP significantly increased for
stations near inflows, including Inner Bay, CR blw. Confl., and Upper Overton. TN significantly
increased for stations in the Las Vegas Bay. TP and TN for a monitoring station 1.4 km upstream from the
original Wash confluence were also analyzed to compare to trends in the Las Vegas Bay; both TP and TN

showed significant negative trends (Fig. S2.10).

Lake Mead elevation significantly decreased since the early 2000s (p = 8.4 x 10, seasonal MK
test). During this time, Wash inflow volume significantly increased (p = 1.2 x 107, seasonal MK test),
whereas Colorado River inflow showed no significant trend (p = 0.90, seasonal MK test). The only
exception is 2012 when a large release of water from Lake Powell was made to address decreasing lake

elevations in Lake Mead that threatened drinking water infrastructure.

Correlation analysis between water quality parameters showed moderate to high correlations
between most water quality parameters (Fig. S2.11). Quagga mussels, Dreissena bugensis, measured as

veliger counts, showed no significant correlations with chlorophyll a or Secchi depth.
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Table 2.1. Trend analysis of water quality parameters for Lake Mead monitoring stations, including
chlorophyll a, TP, TN, TN:TP, surface water temperature, conductivity, and Secchi depth.

Station Chl-a TP (pg/L) TN Water Conductivity Secchi pH
(ug/L) (ug/L) Temp(°C)  (uS/em)  depth (m)

Wash confl. 0.2 0.9 74.5 -0.003
Inner Bay 0.26 1.2 0.1 -0.09

Outer Bay 0.04 -12.2 -0.10

Sentinel Isl. 0.01 -0.02 -11.1 0.06 -13.1 -0.06 -0.007
CR blw. confl. 0.07 0.5 -5.0 -0.22 -0.006
Middle CR arm  0.02 -5.4 -0.25

Upper Outflow -0.02 -6.9 -0.21 -0.005
Upper Overton 0.05 0.3 -4.9 -0.22

Lower Overton -0.05 -1.7 -0.15

Note: a positive number represents a significant positive trend, and a negative number represents a
significant negative trend at a significance level of 0.05. Blank means no significant trend was detected.

2.4.2 Phytoplankton community structures and trends
2.4.2.1 Spatial variability of phytoplankton communities

Total phytoplankton biovolume and community structure differed throughout Lake Mead. Median
total phytoplankton biovolume was 0.19 mm?/L, with a standard deviation of 1.7 mm?/L (min = 0.0039
mm?/L, max = 33 mm?*/L, n = 1517). Highest total biovolume occurred near the Wash inflow (Wash confl.
and Inner Bay) with values an order of magnitude larger than remaining stations (Fig. S2.12). Summer
and winter phytoplankton total biovolume differed significantly for all stations (Fig. S2.13). Community
structures at each monitoring site were dominated by diatoms (primarily species of genera Cyclotella,
Synedra, and Anomoeoneis), green algae (primarily species of genera Pyramichlamys, and Spirogyra),
and cyanobacteria (primarily species of genera Synechococcus, Microcystis and family Chroococcaceae)
(Figs. 2.3, S2.14), with positively skewed distributions (Fig. S2.15). Diatoms, green algae, and
cyanobacteria represented on average 77% of total phytoplankton biovolume. The remaining members of

the community consisted of dinoflagellates (Pyrrhophyta), golden algae (Chrysophyta), cryptomonads
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(Cryptophyta), and haptophytes (Haptophyta) which collectively represented 23% of the total biovolume.
Cyanobacteria constituted a larger percentage of the phytoplankton community at stations further away

from inflows (Fig. 2.3).
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Figure 2.3. Spatial variation in biovolume of major phytoplankton groups calculated from 2012-2018.

2.4.3.2 Cluster analysis
Cluster analysis based on chlorophyll a indicated Lake Mead was optimally divided into three

clusters, (Fig. 2.4). Cluster 1 contained sampling station Las Vegas Wash Confluence with median
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chlorophyll a of 8.12 pg/L. Cluster 2 contained sampling station Inner Las Vegas Bay with median
chlorophyll a of 3.67 pg/L. Cluster 3 contained all other sampling stations with median chlorophyll a of
1.25 pg/L. Station Outer Las Vegas Bay was located closest to the centroid of cluster 3 and used for

further cluster specific analyses.
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Figure 2.4. Cluster analysis of chlorophyll a concentrations. a, Optimal number of clusters, including
cluster centroids. Each monitoring site is represented by a colored dot. b, Spatial distribution of clusters.
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2.4.3.3 Phytoplankton community structures and trends

Total phytoplankton biovolume differed significantly between the three clusters identified through
cluster analysis. Average annual total biovolumes were 2.2 mm?*/L, 0.93 mm?/L, and 0.3 mm?/L for
clusters 1, 2, and 3, respectively. Phytoplankton community structures also differed between clusters, with
green algae and dinoflagellates constituting a larger portion of the total biovolume in cluster 1, and
cyanobacteria constituting a larger portion of cluster 3 (Fig. 2.5). For example, cyanobacteria made up

6.6% of total phytoplankton biovolume in cluster 1, 13.3% in cluster 2, and 23.8% in cluster 3.
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Figure 2.5. Phytoplankton community structures for each cluster, showing mean annual total biovolume
(left) and relative biovolume of seven major phytoplankton groups (right), for a. cluster 1 (Las Vegas
Wash confluence), b. cluster 2 (Inner Las Vegas Bay), and c. cluster 3 (Outer Las Vegas Bay).

Significant trends in total phytoplankton and group specific biovolume were absent from most
monitoring sites, apart from the station closest to the Wash inflow (Wash confl.) where all trends were
significantly positive (Table 2.2; Table S2.2). Other significant increasing trends occurred at shallow
monitoring sites near river inflows, including Inner Bay, CR blw confl., and Upper Overton with depths

of 16, 24, and 20m, respectively, as per June 2021. Significant changes were mostly absent in deeper parts
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of the reservoir, including Outer Bay, Sentinel Isl., Upper outflow, and Lower Overton with depths of 66,

105, 93, and 80m, respectively, as per June 2021.

Table 2.2. Trends in total phytoplankton biovolume and cell abundance, and biovolume of
Bacillariophyta, Chlorophyta, and Cyanophyta.

Station Cluster  Diatoms Green algae Cyanobacteria Total biovolume

Wash confl. 0.019 6.23x 103 1.50 x 1073 0.053

Inner Bay 2.27x10°

Outer Bay

Sentinel Isl. -5.67 x 10" -1.58 x 10" -3.54 x 10" -2.02x 10

CR blw. confl. 1.43 x 10

Middle CR arm

Upper Outflow

W W W[ W W W N —

Upper Overton 2.73x 103

Lower Overton 3

Note: a positive number represents a significant positive trend, and a negative number represents a
significant negative trend at a significance level of 0.05. Blank means no significant trend was detected.

2.4.4 Prediction of phytoplankton biovolume and major groups

Machine learning models were constructed to evaluate model performance and predict lake-wide
chlorophyll a, total phytoplankton biovolume, and biovolume of diatoms, green algae, and cyanobacteria
(Fig. 2.6). The RF algorithm was used for model construction due to superior training and testing R-
squared values compared to other algorithms, although p-values for all models were found to be below
the machine’s epsilon (Table S2.3). Hyperparameters were fitted to reduce model error (Table S2.4) for
cross-validated models with highest testing R-squared (Table S2.5). Models for chlorophyll a and total
biovolume performed well for testing and training datasets, with the chlorophyll @ model performing

slightly better than the total biovolume model, with testing R-squared scores of 0.78 and 0.72,
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respectively. Performance for group specific biovolume models was lower, with testing R-squared scores
between 0.5-0.6. All models were most sensitive to changes in temperature (Fig. 2.6, middle graphs, Table

S2.6).

Uncertainty analysis was used to evaluate model prediction uncertainty in models constructed
with different target variables (Fig. 2.6). The chlorophyll @ model was associated with lowest prediction
uncertainty. Mean predicted chlorophyll a was 2.4 pg/L, with mean upper uncertainty of 6 pg/L and lower
uncertainty of 0.7 pg/L. Models for total and group specific biovolume contained higher uncertainty, with
up to 2 orders of magnitude between upper and lower bounds of the 95% confidence intervals (Fig. 2.6b-
e). For example, mean predicted total biovolume was 0.24 mm?®/L, with mean upper uncertainty of 1.6
mm?®/L and mean lower uncertainty of 0.041 mm?/L. Largest uncertainty occurred in models for diatoms,

green algae, and cyanobacteria biovolume.
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Figure 2.6. Overview of machine learning model results for a, chlorophyll a, b, total phytoplankton
biovolume, c, diatom biovolume, d, green algae biovolume, and e, cyanobacteria biovolume. Model
performance is shown for training and testing datasets (left). Predictor importance is shown for each input
parameter (middle). Timeseries of the testing dataset are shown including the 95% prediction intervals
(right) on a logarithmic scale.
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2.5. Discussion

2.5.1 Phytoplankton response to environmental stressors

Phytoplankton community structures in Lake Mead remained largely stable despite rapid lake
elevation decline and increased Wash inflow. Biovolume of major phytoplankton groups significantly
increased only in shallow areas of the reservoir (Table 2.2), where water temperature or nutrient
concentrations had significantly increased (Table 2.1). TP significantly increased at monitoring sites near
river inflows. Lake level decline can facilitate sediment resuspension and release of sediment phosphorus,
as shown for upstream Lake Powell (Wildman Jr. and Hering, 2011). However, nutrient trends could also
be influenced by lake elevation decline. For example, as lake levels decline, the Wash confluence moves
closer hydrologically to downstream stations. The Wash is currently located 6 km downstream from its
original location, close to the Inner Bay station (Fig. 2.1). This decreases dilution rates, causing a positive
trend in nutrient concentrations at the Inner Bay station. However, this trend is inconsistent with a
monitoring station upstream from the Wash confluence (Fig. S2.10) and a previous study that found
decreasing TP trends upstream from the Wash (Hannoun and Tietjen, 2023). Additionally, trends can be
affected by seasonal irregularities in sample collection (Fig. S9). For the Middle Colorado River arm
station, samples were least frequently collected in winter, when for example deepest Secchi depths occur.
The large decline in Secchi depth (-0.25 m/year) at this station could therefore partly be an artifact of
inconsistent sampling biased to periods of low water clarity, in addition to slightly increasing chlorophyll

a (0.02 pg/L/year).

The overall lack of trends in phytoplankton biovolume throughout Lake Mead is attributable to its
large volume and inflow of high-quality water. About 97% of water is supplied by cold, hypolimnetic
Colorado River water released from Lake Powell (Wright et al., 2009; Hannoun and Tietjen, 2022). As the
dominant inflow, a change in Colorado River water quality will largely affect Lake Mead. Climate change
can affect water quality of the Colorado River inflow. As lake elevations in Lake Powell drop, warmer

epilimnetic water is released into the Colorado River towards Lake Mead (Hannoun and Tietjen, 2022;
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Wang et al., 2022; Scholl et al., 2024). Additionally, warmer winters increase the mixing temperature of
Lake Powell, releasing slightly warmer water from the hypolimnion at higher surface elevations.
Increased Colorado River temperatures may shift the phytoplankton structure to taxa with higher optimal
temperatures, such as cyanobacteria (Paerl & Huisman, 2008). However, phytoplankton growth is
generally restrained by nutrient limitation (Elliott et al., 2006). Therefore, increases in phytoplankton
biovolume due to temperature increases are expected to be limited to nutrient-rich areas such as the Wash
inflow, consistent with Brookes and Carey (2011) who suggested nutrient limited systems will not

respond to water temperature increases without nutrient increases.

2.5.2 Spatial variability in total phytoplankton biomass and community structure

Spatial variability of total phytoplankton biovolume in Lake Mead was most affected by
proximity to nutrient providing inflows to the otherwise meso-oligotrophic reservoir. Highest total
biovolume occurred near the Wash, the major bioavailable nutrient source of the reservoir. Effects of
nutrient-rich inflow were localized as phytoplankton rapidly take up bioavailable nutrients and
concentrations are reduced by dilution (LaBounty and Burns, 2005). Total phytoplankton biovolume
declined significantly moving away from the Wash from 2.2 mm?/L at the confluence (cluster 1) to 0.3
mm?®/L the Outer Las Vegas Bay (cluster 3), an 86% reduction in approximately 4km. This encompasses
the zone of transition, moving from the nutrient-rich riverine inflow to the nutrient-limited lacustrine zone
(Thornton et al., 1981). Total biovolume was also elevated near the Muddy, Virgin and Colorado Rivers
inflows (Fig. S2.12). The effects were more subtle compared to the Wash inflow, as available nutrients
were lower (Fig. 2.2) and the monitoring stations (Upper Overton and CR blw confl.) were located 6-9km

from the confluences (Fig. 2.1).

Phytoplankton at the Wash confluence differed from other stations. Based on relative biovolume,
cyanobacteria constituted a larger percentage of community structure in stations away from the Wash,

contrary to most studies that indicate cyanobacteria are most competitive under enhanced temperature and
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eutrophic conditions, as characteristic to the Wash (Duarte et al., 1992; Paerl et al., 2001; Wiedner et al.,
2007; Paerl and Otten, 2013). However, other Wash characteristics could have deterred cyanobacteria
dominance. First, Wash flow rate combined with wind action can generate turbulent mixing, which favors
larger cells such as diatoms and green algae (Barton et al., 2014; Zhou et al., 2015). Second, differences
in salinity can affect phytoplankton communities. Various studies have shown certain species of
cyanobacteria, such as Microcystis, have low tolerance for salinity (Paerl et al., 2001; Robson and
Hamilton, 2003; Tas et al., 2006; Haakonsson et al., 2020). Conductivity near the Wash inflow is higher
than the ambient Lake Mead conductivity, 2,400 pS/cm compared to 1,000 uS/cm, respectively,
indicating higher salinity (LaBounty and Horn, 1997), which could alter cyanobacteria abundance. Third,
while cyanobacteria are known to thrive in eutrophic conditions, certain taxa are adapted to thrive in
oligotrophic systems as they can regulate their buoyancy to access deeper, nutrient-rich waters (Walsby,
1994), have a high affinity to access and store phosphorus (Reynolds, 2006), can fix nitrogen (Oliver and
Ganf, 2000) and can resist grazing (Vanni and Temte, 1990). Zooplankton grazing and dynamics between
phytoplankton taxa can significantly affect the phytoplankton community composition between clusters
(Tilman et al., 1982; Bergquist et al., 1985). A previous study identified the zooplankton community in
Lake Mead was dominated by Daphnia spp. (Daphnia pulex complex and Daphnia galeata mendotae)
with highest biomass occurring near the Wash inflow (Beaver et al., 2018); however, these variables were

not evaluated in the current study.

2.5.3 Using machine learning to predict total and phytoplankton group biovolume

Machine learning can aid in predicting phytoplankton structures, yet the applicability of a
machine learning model depends on its capability to make accurate predictions. Models for chlorophyll a
and total phytoplankton biovolume showed best performance metrics (Fig. 2.6), with R-squared values
comparable to machine learning models reviewed in Rousso et al. (2020). Models constructed for

biovolume of specific phytoplankton groups were based on less data and performed poorer than the total
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biovolume model. Model performance was improved by limiting the number of input parameters and
correlated parameters to prevent model convolution (Mutshinda et al., 2013; Liu et al., 2023). However,
correlation was not fully prevented as all water quality parameters displayed some degree of correlation
(Fig. S10), typical for many water quality parameters (e.g., Zhang et al., 2021). As such, it was impossible

to completely prevent correlation between input variables.

Uncertainty analysis showed model uncertainty increased when predicting broad target variables
such as chlorophyll a to more specific target variables such as biovolume of major phytoplankton groups.
Large model uncertainty could have been caused by the nature of environmental monitoring programs,
making it particularly hard to sample biovolume peaks and throughs. Total phytoplankton biovolume can
vary greatly on short timescales, even during non-bloom conditions (Reynolds, 2006; Yajima and Derot,
2017), in response to changes in nutrients, temperature, and storms (Kalin et al., 2001; Yajima and Derot,
2017; Diaz-Torres et al., 2021; Liu et al., 2021). However, water quality monitoring programs tend to
collect data on a weekly to monthly basis, with data in Lake Mead collected bi-weekly to monthly. This
decreased the chance of sampling phytoplankton peaks and troughs, which are thus underrepresented in
the data and increase uncertainty. Group specific biovolume also varied significantly between monitoring
stations (e.g., green algae biovolume in cluster 1 compared to cluster 3, Fig. 2.5), which can increase
uncertainty when training lake-wide models. Additionally, the models were simplified by only
considering a select number of abiotic factors, whereas phytoplankton assemblages are also strongly
impacted by biotic factors such as zooplankton grazing and interactions between phytoplankton taxa. In
fact, zooplankton grazing has been identified as the most important factor for causing model uncertainty
when predicting marine phytoplankton (Rohr et al., 2023), and is expected to also contribute to observed
uncertainty in this study. As the models remain simplified representations of real-world conditions and
contain highly variable data such as phytoplankton biovolume, uncertainty analysis should be included to

show prediction intervals to communicate model uncertainty.
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2.5.4 Broader implications

Many lakes and reservoirs in the southwestern United States have experienced rapid volume loss
due to prolonged drought conditions since 2000 (Wahl et al., 2022). These waterbodies often serve as
drinking water sources, recreational areas, and ecological habitats where water quality can be negatively
impacted by changes in phytoplankton biomass and composition. For example, phytoplankton can
negatively impact drinking water quality and treatment processes by clogging up filters (Palmer, 1959),
increasing the formation of disinfection byproducts (Fang et al., 2010), and increasing overall water
treatment costs (Dunlap et al., 2015). Additionally, phytoplankton community shift to increased
cyanobacteria dominance can negatively affect aquatic life: cyanobacteria can have an allelopathic effect
on the growth of their competitors (Suikkanen et al., 2004), are of low edibility to zooplankton (Porter,
1977), and can produce toxins in quantities toxic to mammals, including humans, during blooms

(Carmichael, 2001).

Phytoplankton in large, oligotrophic reservoirs are expected to show a similar lack of temporal
trends as Lake Mead, unless they are accompanied by increased nutrient loading. However, changes in
future water management can alter water levels which can affect hydrological and water quality
parameters, as shown for the Colorado River Basin (Bruckerhoff et al., 2022). Machine learning can be
used as a tool for predicting chlorophyll a concentrations and total phytoplankton biovolume. As machine
learning models are based on a few easily attainable water quality parameters, such as water temperature
and nutrients, they are easy to use and can be used to study phytoplankton response to changes in
hydrologic and water quality parameters. For example, the effect of temperature change on phytoplankton
could be simulated by increasing the temperature input parameter and analyzing changes in model
outputs. This study presented a reproducible workflow for model setup and prediction uncertainty

analysis.
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2.6. Conclusion

Drought, climate change, and eutrophication can affect total phytoplankton biovolume and shift
species compositions in lakes and reservoirs. Besides rapid water level decline and inflow of highly-
treated wastewater, the phytoplankton community in a large, meso-oligotrophic reservoir has not
significantly changed. This finding highlights the buffering capacity of large, oligotrophic reservoirs to
maintain stable water quality and phytoplankton communities. However, changes in phytoplankton
biovolume and community structure can occur once this buffering capacity is passed. This was most
noticeable in shallow areas near river inflows where water temperature or TP had increased, although lake
level decline and encroaching river confluences affecting dilution rates needed to be accounted for.
Predicting future phytoplankton biomass in areas identified prone to phytoplankton change is important to
understand potential water quality changes. Machine learning proved to be a robust tool for predicting
chlorophyll a concentrations and total phytoplankton biovolume. Regardless of the constructed model,
prediction uncertainty was high, owing to the highly erratic nature of phytoplankton, infrequent (bi-
weekly to monthly) sampling, and simplification of the model; this study therefore provided a framework

to include uncertainty analysis when communicating prediction results.
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2.8 Supplementary materials

Y Monitoring Stations
B Drinking Water Intake

Virgin River

i 73
APT
Overton Arm

,_Te"ple Basin

1

Figure S2.1. Lake Mead with all inflows and outflows, basins, water quality sampling stations named
according to inter-agency nomenclature, and SNWA’s drinking water intake shown. The lake elevation of
June 2023 is marked with the dark blue contour line, previous lake elevations are shown as grey contour
lines.
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Figure S2.2. Timeseries of Total Phosphorus (TP) for the different monitoring sites. Note: different y-
scale for the first two stations.
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Figure S2.3. Timeseries of Total Nitrogen (TN) for the different monitoring sites. Note: different y-scale
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before 2016, after which the detection limit was lowered from 0.5 mg/L to 0.1 mg/L.
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Figure S2.4. Chlorophyll-a (ChlA) timeseries for the different monitoring sites, showing highest values
occur near the Wash inflow (Wash Confluence).
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Figure S2.6. Temperature timeseries for the different monitoring sites.
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Table S2.1. Analysis of variance (ANOVA) for environmental and water quality parameters, showing the
mean and standard deviation of all stations combined, along with the degrees of freedom (between
groups, within groups) and the significance level.

Parameter Unit Mean Standard F P

Deviation
TP mg/L 0.043 0.17 57.15 (5, 1589) 4.96 x 10719
TN mg/L 2.43 3.22 76.05 (7, 468) 9.10 x 10°%
Chlorophyll-a pg/L 3.07 7.19 133.35 (7, 1828) 2.26x 1077
Secchi Depth m 7.67 4.33 77.42 (7,495) 2.67x 10
Water Temp °C 20.63 5.64 77.42 (7, 2430) 0.0011
Conductivity uS/cm 1063.30 232.63 662.57 (7, 3816) 0
pH - 8.36 0.14 662.57 (7, 3123) 8.16 x 103

25

- N
w o

Collected measurements
>

Winter

Spring

Fall

Figure S2.9. Number of Secchi depth measurements collected during winter, spring, summer, and fall for
the Middle Colorado River arm station.
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Figure S2.10. Seasonal Mann-Kendall trend test at monitoring site LWO0.9 in the Las Vegas Wash for a.
total phosphorus, showing a significant negative trend (p = 1.01x10°) between 2003-2023 and b. total
nitrogen showing a significant negative trend (p = 3.98x10-%) between 2013-2023.
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Figure S2.12. Mean annual biovolume of major phytoplankton groups for 9 monitoring stations in Lake
Mead. Y-scale adjusted for Las Vegas Wash confl. and Inner Las Vegas Bay. Mean annual biovolume:
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Figure S2.13. Average biovolume of major phytoplankton groups in Lake Mead in summer (left) and
winter (right) for a. Cluster 1, b. Cluster 2, and c. Cluster 3.
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Figure S2.14. Biovolume of genera constituting 90% of phytoplankton biovolume between 2012-2018
for a. diatoms, b. green algae, and c. cyanobacteria.
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groups at all monitoring stations.
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Table S2.2. Trends of biovolume of phytoplankton groups at various locations in Lake Mead using
significance level of 0.05. Values mark biovolume (mm?/L) change per year.

Station Cluster  Diatoms Green Cyano- Golden Crypto- Hapto- Dino-
algae bacteria algae monads phytes flagellates

Wash 1 0.019 6.23x10°% 150x10% 3.26 x 103 3.28 x 10*

confl.

Inner 2 2.27x 103 4.96 x 10 -3.12x 10 -4.85x10

Bay

Outer 3 1.88 x 10* -4.48 x 10

Bay

Sentinel 3 -5.67x10* -1.58x10* -3.54x10* 9.89 x 10°® -2.98 x 10

Isl.

CR blw. 3 1.43x 103

confl.

Middle 3 4.58 x 104

CR arm

Upper 3 2.06 x 10

Outflow

Upper 3 2.73x 103

Overton

Lower 3 2.38 x 10*

Overton

Note: a positive number represents a significant positive trend, a negative number represents a significant
negative trend at a significance level of 0.05. Blank means no significant trend was detected.

Table S2.3. Comparison of regression model performances to predict cyanobacteria biovolume.

Regression model MATLAB Training Training Testing Testing Model p-
function R-squared RMSE R-squared RMSE value

Linear regression fitlm 0.44 0.45 0.44 0.46 2.1x10%

Gaussian Process fitrgp 0.53 0.42 0.52 0.42 2.7x 1017

Regression Model

Generalized Linear fitglm 0.53 0.42 0.44 0.46 2.1x10%

Model

Generative Additive fitrgam 0.71 0.32 0.39 0.48 1.9x 10

Model (GAM)

Regression Tree fitrtree 0.85 0.23 0.19 0.55 7.6x 107

Regression Tree fitrensemble  0.99 0.051 0.15 0.56 1.8 x 10

Ensembles

Ensemble of Bagged  Treebagger 0.77 0.29 0.50 0.43 9.6 x 10712

decision trees

55



Table S2.4. Hyperparameters for each constructed model after optimization.

RF model MinLeafSize! NumPredictorstoSample? NumTrees?
Chlorophyll-a 6 4 4598

Total Biovolume 1 1 983
Diatoms 14 4 1117
Green algae 7 1 4408
Cyanobacteria 20 2 3969

! Minimum number of leaf node observations
2 Number of predictor variables for each decision split

3 Number of trees grown

Table S2.5. Model performance for all subsets of models trained with randomly selected input data and
hyperparameters optimized. Models in bold indicate models used for further analysis.

Model Number Training R-squared Testing R-squared

Chlorophyll a 1 0.83 0.72
2 0.89 0.75
3 0.90 0.72
4 0.97 0.72
5 0.93 0.71
6 0.95 0.72
7 0.97 0.72
8 0.97 0.71
9 0.93 0.73
10 0.97 0.71

Total biovolume 1 0.97 0.67
2 0.96 0.66
3 0.90 0.66
4 0.87 0.68
5 0.97 0.68
6 0.97 0.66
7 0.96 0.66
8 0.97 0.68
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0.68
0.69

0.40
0.42
0.56
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0.49
0.42
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0.44
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0.45
0.45
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0.41
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Table S2.6. Predictor importance for each model constructed for cross-validation.

Model Number Temperature TP Secchi Conductivity Lake
Elevation
Chlorophyll a 1 0.3315 0.1329 0.1925 0.1367 0.2065
2 0.3422 0.1241 0.1889 0.1242 0.2205
3 0.2878 0.1559 0.1787 0.1603 0.2173
4 0.3369 0.1453 0.1818 0.1378 0.1982
5 0.3527 0.1267 0.2307 0.097 0.1930
6 0.3234 0.1466 0.1980 0.1358 0.1962
7 0.2879 0.1714 0.1846 0.1575 0.1986
8 0.3337 0.1495 0.1934 0.1444 0.1790
9 0.3609 0.1281 0.2064 0.1086 0.1960
10 0.2841 0.1774 0.1904 0.1573 0.1907
Total 1 0.3337 0.1179 0.1771 0.1910 0.1804
biovolume 2 0.3953 0.0967 0.1864 0.1802 0.1414
3 0.4198 0.0933 0.1650 0.1551 0.1668
4 0.4420 0.0645 0.1922 0.1503 0.1509
5 0.3303 0.1193 0.1844 0.1868 0.1793
6 0.3922 0.0873 0.1867 0.1712 0.1626
7 0.3358 0.1236 0.1880 0.1763 0.1762
8 0.3158 0.1423 0.1739 0.1929 0.1752
9 0.3889 0.1070 0.1881 0.1608 0.1552
10 0.3401 0.1312 0.1761 0.1839 0.1688
Diatoms 1 0.2772 0.1202 0.2096 0.2199 0.1731
2 0.2835 0.1212 0.2284 0.2139 0.1531
3 0.3824 0.0888 0.2137 0.1706 0.1445
4 0.2866 0.0763 0.2492 0.2340 0.1539
5 0.2117 0.1613 0.2534 0.2178 0.1558
6 0.3020 0.1038 0.2201 0.2246 0.1494
7 0.2327 0.1320 0.2331 0.2154 0.1868
8 0.2638 0.1398 0.2097 0.2013 0.1854
9 0.2446 0.1602 0.2149 0.1829 0.1974
10 0.3164 0.1007 0.2336 0.1996 0.1496
Green algae 1 0.4646 0.1305 0.1410 0.1536 0.1103
2 0.5091 0.0860 0.1188 0.1671 0.1190
3 0.6711 0.0066 0.1247 0.1113 0.0864
4 0.5520 0.0493 0.1812 0.1435 0.0741
5 0.6100 0.0465 0.1500 0.1194 0.0741
6 0.4661 0.1229 0.0962 0.1620 0.1528
7 0.5843 0.0388 0.1540 0.1668 0.0561
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Cyanobacteria
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0.5041

0.3910
0.4567
0.4175
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0.0886
0.0519
0.1036

0.1030
0.0675
0.0671
0.0818
0.0815
0.0757
0.1165
0.0768
0.0814
0.0685

0.1611
0.1545
0.1503

0.1647
0.1292
0.1657
0.1491
0.1710
0.1473
0.1582
0.1473
0.1398
0.1270

0.1839
0.1697
0.1433

0.1507
0.1539
0.1596
0.1565
0.1794
0.1574
0.1734
0.1663
0.1610
0.1443

0.1131
0.0555
0.0987

0.1906
0.1927
0.1900
0.1948
0.1623
0.1804
0.1861
0.2010
0.1801
0.1911
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CHAPTER 3 — RIPARIAN ECOSYSTEMS

Drought-induced flood sensitivity as driver for riparian woodland mortality

3.1 Abstract

Severe drought conditions have occurred throughout the southwestern United States since the
start of the Megadrought in 2000. During this period, land managers noticed extensive dieback and
mortality of riparian vegetation at sites in Nevada and California, raising the possibility of a link to
climate change. Regional synchronicity combined with topographic patterns of woodland mortality
indicates phreatophytes might be vulnerable to drought intensification through a previously unknown
mechanism. Here, [ propose a conceptual model where multi-year drought followed by flooding can be an
important driver for riparian woodland mortality. I suggest intense drought affects the ability of riparian
vegetation to endure seasonal groundwater fluctuations by reducing shallow root activity. Shallow roots
are essential for water uptake during high water tables. However, when a prolonged drought is followed
by a wet period, surface roots are unable to sprout rootlets and root hairs quick enough to meet water
demands, leading to stress and eventual death. Here, I analyze long-term trends in riparian woodland
health at sites in five watersheds in the southwestern United States combined with drought, precipitation,
and topographic data. My results indicate riparian woodland mortality may occur globally in regions
experiencing intensified drought conditions. This would result in loss of important ecological functions as
riparian ecosystems function as biodiversity hotspots, improve water quality, and aid in erosion and flood

control.
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3.2 Introduction

Intense drought since 2000 has resulted in global forest mortality extending from the tropics to
the Arctics (Allen et al., 2010; Hammond et al., 2022). Drought triggers water and heat stress, leading to
tissue damage, impaired plant functions, and if sustained over prolonged periods, ultimately death
(Teskey et al., 2015; Martinez- Vilalta et al., 2019; Hammond et al., 2019). Recently, public agencies in
the southwestern United States reported regional wide dieback and mortality of riparian woodlands
(Stephens, 2022), here defined as vegetated areas along waterbodies, dominated by screwbean mesquite,
Prosopis pubescens, and tamarisk, Tamarix ramosissima. The cause of the die-off remains unknown and
cannot readily be explained through drought stress alone. Riparian woodlands are believed to be buffered
from drought as many trees are phreatophytes that contain taproots to access groundwater (Hultine et al.,
2020). During drought, their roots grow deeper to follow the declining water table. Gradual groundwater

decline therefore poses little stress to these plants (Scott et al., 1999; Williams et al., 2022).

During wet periods, water table rise may induce hypoxia in the root system, which can lead to
tree mortality (Visser et al., 2003; Anderegg et al., 2013). Located in floodplains, riparian trees are
exposed to flooding and seasonal groundwater fluctuations. Groundwater is generally hypoxic and unable
to support oxygen dependent roots (Shimp et al., 1993). Roots therefore do not grow into groundwater but
stay near the capillary fringe (Fan et al., 2017). Groundwater rise during the wet season submerges the
lower part of the root structure (Canham et al., 2012). Roots submerged in groundwater are
physiologically inactive due to oxygen stress and do not take up water (Dawson and Pate, 1996; Williams
and Cooper, 2005). During wet periods, surface roots take up infiltrating water from precipitation and
flooding (Canham et al., 2012; Fan et al., 2017). This gives rise to a dimorphic root system where root
water uptake comes from surface roots during high water tables and from deeper roots during low water

tables.

This unique root system thus protects phreatophytes against plant stress from seasonal

groundwater fluctuations. I hypothesize that intense drought weakens this ability to deal with groundwater
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fluctuations, leading to the observed mortality. Intense drought can damage shallow roots due to
prolonged exposure to dry and hot soil, similarly to how roots of non-riparian trees are damaged by
drought (e.g., Cuneo et al., 2016). Shallow root damage will not manifest in shoot stress during drought,
as water uptake comes primarily from the deep root system near the water table. Instead, stress occurs
when a multi-year drought is followed by a wet period. When water tables are high, damaged surface
roots cannot take up water. At this time, both the lower and upper parts of the root system are inactive,

causing major water stress, and in some conditions, unrecoverable damage and tree mortality.

To test this hypothesis, I studied the timing, regionality, climatic and topographic control of
riparian woodland mortality in the southwestern United States. Based on the proposed hypothesis,
riparian plant heath is expected to remain stable during drought, with major declines in plant health
occurring when a multi-year drought is followed by a wet period. Die-off is expected to occur
simultaneously within a region but to be controlled by climatological differences between regions. Within
a watershed, topography is expected to control die-off where low laying areas are more susceptible to

flooding and die-off.

3.3  Methods
I studied drought-flooding stress as potential driver for riparian woodland mortality at eight study
sites in California, Nevada, Arizona, and New Mexico through analysis of remotely sensed vegetation

index and climatological data, combined with topographic and root structure data.

3.3.1 Study location
Riparian woodland mortality was studied at sites in Ash Meadows and Shoshone in California,
along the Muddy River and the lower Virgin River in Nevada, along the Gila River in Arizona, and along

the Rio Grande in New Mexico (Fig. 3.1). While all locations experience hot summer and mild winters,
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precipitation regimes differ. California and Nevada experience most precipitation in winter, whereas most
precipitation in Arizona and New Mexico occurs during the summer monsoon (Fig. S3.1). Riparian
woodlands in Ash Meadows and Shoshone are dominated by screwbean mesquite, Prosopis pubescens,
honey mesquite, Prosopis glandulosa, and leather-leaf ash, Fraxinus velutina. Riparian woodlands along
the Muddy and Virgin Rivers are primarily dominated by tamarisk, Tamarix ramosissima. Riparian
woodlands along the Gila River and the Rio Grande contained screwbean mesquite (GBIF.org, 2022,

accessed 10/14/2022).

Ash Meadows and Shoshone are part of the Amargosa River Basin, which originates north of
Beatty, NV and flows approximately 240 km south and west before terminating in Badwater Basin, Death
Valley, CA (Belcher et al., 2019). The river flows perennially only at parts fed by springs; most of the
reaches are characterized by subsurface flow (Zdon, 2014) and soil profiles typically range from (fine)
sandy loam to silty clay loam (Soil Survey Staff, 2024). The average annual precipitation in this area is
130 mm for 1981-2010 (103 mm for 2000-2021) (Western Regional Climate Center, 2023b). The Virgin
River originates north of Zion Canyon, UT, and flows approximately 270 km southwest before
terminating in Lake Mead, NV. The Virgin River is partly snow-fed from mountains in Utah, and
experiences large fluctuations in streamflow seasonally. Soil profiles in the lower Virgin River typically
range from fine sand to silty clay loam (Soil Survey Staff, 2024). The Muddy River is a spring-fed system
connected to an extensive groundwater system. The river is approximately 50 km long and terminates in
Lake Mead, NV. Soil profiles typically range from fine sandy loam to silty clay (Soil Survey Staff, 2024).
Average annual precipitation for the Virgin and Muddy Rivers is 128 mm for 1981-2010 (108 mm for
2000-2021) for Overton, NV (Western Regional Climate Center, 2023a). The Gila River is a 1,044 km
long tributary of the Colorado River, originating in western New Mexico. The average annual
precipitation in Gila Bend, AZ, near the Gila River study location is 179 mm for 1981-2010 (Western

Regional Climate Center, 2024). The Rio Grande is a major North American river, 3,051 km long,

63



originating in southern Colorado. The average annual precipitation at Las Cruces, NM, near the southern

Rio Grande study location is 230 mm (Hendrickx and Walker, 2017).

Study locations were selected based on riparian woodland size, presence of woodland mortality,
and dominant tree species, which was validated through fieldwork for sites in California and Nevada (Ash
Meadows, Shoshone, Tecopa, Virgin River, Muddy River). Sites in Arizona and New Mexico (Gila River,
Rio Grande) were selected using online herbarium data of screwbean mesquite (GBIF.org, 2022, accessed
10/14/2022). At each study location, individual sites were selected for remote sensing analysis ensuring

full tree coverage on 30 x 30 m plots (Table S3.1).
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Figure 3.1. Study locations at Ash Meadows and Shoshone along the Amargosa River in
California/Nevada, the Virgin River in Nevada, the Gila River in Arizona, and the Rio Grande in New

Mexico.

3.3.2 Remote sensing

To test the hypothesis that woodland mortality occurred simultaneously throughout the

southwestern United States, I analyzed trends in Normalized Difference Vegetation Index (NDVI) at 48

study sites between 1993-2023. Results of this analysis will identify long-term trends in NDVI and

determine the timing of woodland mortality. NDVI is calculated from the ratio between near-infrared

(NIR) and red reflection from vegetation and surfaces (Running, 1990; Myneni et al., 1995) (Eq. 3.1),
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NIR—Red
NDV] = ——— (Equation 3.1)
NIR+Red

with NDVI values ranging from -1 to 1, where negative values indicate water, values near zero indicate
bare soil, and values close to 1 represent healthy, green vegetation (Jones and Vaughan, 2010). NDVI is
correlated to plant greenness and used as an indicator of plant productivity and vegetation health
(Meneses-Tovar, 2011). Remotely sensed NDVI provides consistent, temporally, and extensive spatially
covering records. It has been widely used to evaluate and map tree mortality (Spruce et al., 2019), and as
an early indicator of forest mortality (Byer and Jin, 2017; Rogers et al., 2018; Liu et al., 2019). More
specific to riparian vegetation, remote sensing has been used to study relationships between NDVI and
changes in groundwater level (Aguilar et al., 2012), groundwater flow discharge (Petus et al., 2012), and

surface water flooding (Fu and Burgher, 2015).

In this study, Landsat NDVI was used due to its high spatial resolution (30m), allowing for
superior trend detection compared to moderate and coarse scale imagery (Ju and Masek, 2016). NDVI
data for each study site was downloaded using the web application Climate Engine, that uses the cloud-
computing platform of Google Earth Engine to download and visualize remote sensing data (Huntington
et al., 2017). Mean NDVI was calculated for each year during the northern growing season (April 1 —
October 31) using a data acquisition interval of eight days. NDVI values of different sites were

normalized (Eq. 3.2) to allow for direct comparison between sites,

= — (Equation 3.2)
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where Z is the normalized value, x the NDVI value (annual average for Apr 1 to Oct 31), £ mean NDVI
value between 1993-2023, and ¢ the standard deviation. Positive values indicate years of above average

NDVI, whereas negative values indicate years of below average NDVI.

3.3.3 Statistical analyses

3.3.3.1 Trend analysis

To test the hypothesis that riparian woodland NDVI has decreased over the last decades, I
calculated trends using the seasonal Mann-Kendall test. Trend tests were carried out using a significance
level of 95% using the kendallSeasonallrendTest function of the EnvStats package (v2.8.1; Millard,

2013).

3.3.3.2 Regression tree analysis

To test the hypothesis that woodland mortality occurs when a multi-year drought is followed by a
wet period, [ analyzed the relationship between NDVI, drought index, and annual precipitation using
regression tree analysis. The results of this analysis will show how drought and precipitation impact
NDVI and identify threshold values of input variables. Regression trees explain variation in the output
variable by splitting up input variables to minimize the sum of squares in each group of the split (De’ath
and Fabricius, 2000). Examples of this methodology can be found in (Valiya Veettil and Mishra, 2020;
Beigaite et al., 2022; Veettil and Mishra, 2023), as well as responses of riparian vegetation NDVI to
climate (Fu and Burgher, 2015). Regression tree analysis was carried out in Rstudio using the ctree

function of the partykit package (Hothorn and Zeileis, 2015; v1.2-20).

Model input data consisted of drought index and precipitation, and output data was defined as
NDVI trend. NDVI trends were calculated as percentage NDVI increase or decrease between the prior
year and year of interest. Data for model construction was split into a training, testing, and

hyperparameter optimization dataset using a 50%, 20%, 30% split, respectively, to minimize overfitting
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(Lever et al., 2016; Chicco, 2017). Hyperparameter optimization was carried out to determine the
minimum significance level required for splits and maximum tree depth, using the #rain function of the
caret package (Kuhn, 2008; v6.0-94). Correlation between NDVI, drought, precipitation, and the effect of
time lag on correlations was calculated using Spearman correlation analysis (Spearman, 1961). Analysis
was carried out using significance levels of 0.01 and 0.05 in RStudio (v4.2.2; R Core Team, 2022) using

the function cor.

Sources for precipitation data were a weather station in Pahrump, NV (Western Regional Climate
Center, 2023b) for the Amargosa River Basin sites (Ash Meadows, Shoshone, and Tecopa), a weather
station in Overton, NV (Western Regional Climate Center, 2023a) for the Muddy and Virgin Rivers sites,
and a weather station in Las Cruces, NM (Automated Surface Observing System (ASOS), 2023) for
Arizona and New Mexico sites. Drought data was obtained from the U.S. Drought Monitor (USDM)
(https://droughtmonitor.unl.edu/DmData/DataTables.aspx, accessed 12/20/2023). Drought data used was
calculated by the USDM as the Drought Severity and Coverage Index (DSCI) to convert categorical
drought severity data to single aggregated values by calculating weighted averages of the percent areas

under drought (Akyuz, 2017) (Eq. 3.3),

DSCI = 1(D0) + 2(D1) + 3(D2) + 4(D3) + 5(D4) (Equation 3.3)

where DO represents abnormally dry conditions, D1 moderate drought, D2 severe drought, D3 Extreme
drought, and D4 Exceptional drought. Drought conditions are defined through input of various
hydrological inputs and field observations, such as precipitation, streamflow, temperature and evaporative

demand, reservoir levels, and soil moisture.
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3.3.4 Topography and groundwater depth

To test the hypothesis that topography controls woodland mortality, I analyzed the relationship of
topography to NDVI trends using Digital Elevation Model (DEM) data and past water table fluctuations
along the lower Virgin River in Nevada, which is dominated by tamarisk. The results of this analysis will
show if die-off is limited to areas susceptible to flooding. High-resolution (1m) DEM data were
downloaded from the United States Geological Survey (USGS). DEMs were converted to elevation
profiles of river cross sections using QGIS. Elevation profiles were assessed against summer NDVI (Jun

1 to Aug 1) in 2013 in comparison to the 30-year average (1991-2020).

Past groundwater levels were obtained from shallow wells in Ash Meadows (well number
362519116201301 for 1994-1998) and along the Virgin River (well numbers 365349113552201,
365345113552301, 365352113551401, 365349113551701 for 1990-1995) from the USGS. Water table
data was compared to monthly precipitation for Las Vegas, Nevada (Station ID GHCND:USW00023169)
from the National Oceanic and Atmospheric Administration. While no current shallow well information
was available, seasonal groundwater fluctuations and the relationship between water table and

precipitation are not expected to have changed.

3.3.5 Root distribution analysis

To test the hypothesis that the root system is divided in an upper and lower root system with the
lower root system responsible for root water uptake during low water tables, I analyzed the root
distribution of screwbean mesquite, Prosopis pubescens, through a tree excavation and a greenhouse
experiment. The results of this experiment will show how the plants respond to decreasing water tables
and how the roots are positioned with regard to the water table. A mature tree was excavated along the
lower Virgin River to verify the presence of a dimorphic root system on May 3, 2023. Three screwbean
mesquite seedlings were grown for eight months to study the positioning of the root system for three

different scenarios: 1) surface irrigation, 2) a constant water table, and 3) a constant water table for five
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months, followed by a receding water table for three months. Seedlings were grown in soil tubes
constructed of transparent pvc-pipe of 1 m length and 15 cm diameter. Soil tubes were filled with coarse
sand as soil material. Seedlings were grown indoors at room temperature underneath a 1000W full
spectrum LED grow light (Giixer) connected to a timer to provide 12 hours of light per day. Constant
groundwater levels were ensured through a Marriott bottle/siphon system as illustrated in Jarrell &
Virginia (1990) (Fig. S3.2). Water for the experiment was collected from a deep well in North Las Vegas.
Seedlings were planted on July 25, 2023 and harvested on March 21, 2024. All seedlings were provided
with surface irrigation during the first 6 weeks after planting, to allow for establishment of the root
system. To guarantee minimal damage to the root system during harvest, soil columns were cut open and

sediment was carefully washed off roots.

34 Results

In this study, I constructed a conceptual model to explain observations related to riparian
woodland mortality in the southwestern United States. First, I used remotely sensed NDVI data to study
the regionality and timing of the mortality. Second, I used regression tree analysis to evaluate the link
between woodland mortality, drought index, and precipitation. Third, I investigated the link between
mortality and die-off on a local, i.e., floodplain, scale using digital elevation data. Last, I conducted a
greenhouse experiment to study the positioning of the root system of screwbean mesquite seedlings in

regard to groundwater.

3.4.1 Regionality and timing of riparian vegetation mortality

Vegetation mortality affected screwbean mesquite and tamarisk growing in different watersheds,
ranging from snow-fed system of the Virgin River to the spring fed systems of the Amargosa and Muddy
River Basins (Fig. 3.2a-e). In all locations, riparian vegetation occupied similar ecohydrological

environments with shallow groundwater.
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Riparian vegetation at the Nevada and California sites experienced overall significantly
decreasing trends in growing season NDVI between 1993-2023 (p < 0.05, MK-trend test, Table S3.1).
Between 2010-2012, most stands experienced simultaneous die-off, resulting in a sharp decrease in
NDVI, to below-average values (Fig. 3.2a-e, S3.3). Tree mortality at different sites occurred in a similar
fashion: an initial rapid decrease in tree health in 2011, leading to below average values in 2012 that
persisted and showed no rebounds the years after. Absolute declines in NDVI were larger for tamarisk

(Fig. S3.4d-f) compared to screwbean mesquite (Fig. S3.4a-c).

Riparian vegetation at the Arizona and New Mexico sites did not experience significant
decreasing trends in NDVI between 1993-2023 (p > 0.05, MK-trend test, Table S3.1). While riparian
vegetation at the Arizona and New Mexico sites showed inter-annual variations in NDVI, they did not

experience regional wide die-off between 2010-2012 (Fig. 3.2f; S3.3).
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Figure 3.2. Annual average normalized NDVI during the growing season (Apr 1-Oct 31) for areas
experiencing riparian woodland mortality along the Amargosa River in a. Ash Meadows, b. Shoshone,
and c. Tecopa, and along the d. Virgin, and e. Muddy Rivers, compared to vegetation along the f. Gila
River in New Mexico. Sites in Nevada and Arizona (a-e) show rapid decrease in NDVI values between
2010-2012, which was absent from the Rio Grande. Sites a-c were dominated with screwbean mesquite,
sites d-e with tamarisk.

3.4.2 Climatic control

Regional wide NDVI declines in riparian vegetation health were observed at the end of drought-
flood cycles. Multi-year drought occurred between 2002-2005, 2007-2010, and 2012-2016 (Fig. 3.3c¢).
The three wettest water years since 2000 occurred in 2005, 2011, and 2016/17, all being significantly
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wetter than average water year precipitation (p < 0.01 for Amargosa and Virgin rivers, one-sided t-test)
(Fig. 3.3b). Rapid NDVI declines were identified between 2005-2007 and 2010-2012 (Fig. 3.3a). NDVI
declines occurred directly after a drought-wet cycle. Rapid, unrecoverable declines in riparian vegetation
health were absent from riparian woodlands at Arizona and New Mexico sites, where annual precipitation

was higher and more constant, and drought cycles were more truncated (Fig. S3.5).

The majority of observed riparian woodland mortality at sites in Nevada and California occurred
during the 2010-2012 die-off event (Fig. 3.2). The earlier event of 2005-2007 resulted in a sharp decrease
in NDVI for Shoshone (Fig. 3.3a) but did not result in observable die-off; NDVI levels recovered to
during the next two years. As most riparian woodlands die-off and dieback occurred between 2010-2012,
subsequent die-off occurred only at a smaller scale, slowly increasing the total area of mortality. Die-off
after the 2010-2012 event was observed in Ash Meadows, where certain stands died after 2015 (Fig.

33.6a).

Riparian woodland stands at Lake Mohave along the Colorado River, 130 km south from the
Virgin River stand showed no mortality event between 2010-2012 (Fig. S3.6b). Here, water level was
regulated by water released from the Hoover dam upstream and no water level increase was observed in

2010-2011 compared to other years (U.S. Geological Survey, 2023).
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Figure 3.3. Climatic variables in relation to the regional wide die-off event of screwbean mesquite,
shown by the red shaded area. a. Average annual normalized NDVI for the growing season (Apr-Oct) in
Shoshone (Sho 2 site), CA, showing rapid decrease in NDVI between 2010-2012. b. Monthly
precipitation for Pahrump, CA, showing a peak in precipitation occurred right before the die-off event in
December 2010. ¢. Average drought severity and coverage index for counties experiencing die-off (Clark,
Inyo, and Nye counties), where 0 means none of the area is experiencing drought, and 500 means the
entire area is in exceptional drought.

Regression tree analysis was used to identify threshold values for drought index and annual
precipitation that could drive NDVI declines for sites in California and Nevada combined (Fig. 3.4).

Through hyperparameter optimization, a minimum significance level of 0.9 and maximum tree depth of
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three was identified. Precipitation was the first splitting node, indicating it is the most important variable
for predicting NDVI trends (Fig. 3.4). Negative NDVI trends were observed when annual precipitation
was larger than 115.8 mm and drought index was higher than 311.1, indicating severe drought conditions
(nodes 10 and 11) combined with above average rainfall. Negative NDVI trends were also observed for
precipitation below 115.8 mm with drought index between 205.7 - 226.7 (node 5). The 23 observations in

this node were further identified as years precipitation between 83.5 — 110.0 mm (Table S3.2).

Precipitation
p < 0.001

<205.7 >205.7

Node 4 (n = 156) Node 5 (n = 23) Node 6 (n = 120) Node 8 (n = 107) Node 10 (n = 14) Node 11 (n = 10)
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Figure 3.4. Regression tree showing classification of NDVI trends based on mean annual drought index
and mean annual precipitation. Precipitation was identified as the most important predictor determining
trends in NDVI, with negative trends (Nodes 10 and 11) occurring when precipitation was above 115 mm
combined with severe drought (drought index > 311).
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3.43 Groundwater fluctuations and topographic control on woodland mortality

Historical well data along the Amargosa and Virgin Rivers was analyzed to understand
groundwater dynamics at research sites in California and Nevada. Data showed seasonal and inter-
annually fluctuating water tables (Fig. 3.5). Highest water tables occurred at the beginning of the growing
season, between March and April. Lowest water tables occurred at the end of the growing season,
between August and September. Water tables fluctuated up to 0.6m and 1.6m seasonally along the Virgin
and Amargosa Rivers, respectively. Interannual variations in water table driven by drought and flood
cycles were superimposed on the seasonal fluctuations. 1992 was one of the wettest years in southern
Nevada (Las Vegas) with annual precipitation of 251 mm compared to the average of 106 mm (National
Weather Service, 2024). Water tables along the Virgin River peaked the following year, in 1993, with
water table maxima 0.8m higher compared to the maxima in 1992 (Fig. 3.5b). As such, at this location

during non-drought conditions, doubling precipitation raised the water table by 0.8 m the following year.
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Figure 3.5. Monthly depth of water table and monthly precipitation in a. Ash Meadows, Amargosa River
Basin from 1994-1998, and b. along the Virgin River near Littlefield, Arizona from 1990-1995, showing
inter-annual variations in maximum and minimum depth to water table, as well as seasonal fluctuations
where highest groundwater levels occur in spring at the beginning of the growing season and lowest
levels occur at the end of the growing season.

Tamarisk-dominated riparian vegetation on low-laying areas along the Lower Virgin River
showed large NDVI decreases during the 2010-2012 die-off event. At the same time, riparian vegetation

at the outer (higher elevation) edge of the floodplain showed no signs of vegetation stress (Fig. 3.6; S3.7).
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Figure 3.6. Tamarisk-dominated riparian vegetation along the lower Virgin River showing a gradient in
tree mortality when moving away from the river, Google Earth imagery 05/2013, b. Summer (Jun 1 —
Aug 1) NDVI in 2013 compared to the 30-year average (1991-2020), where red indicated values lower
than average, green higher than averages and white no change. c. Elevation transect showing die-off is

limited to topographic lows, where flood water accumulates. Green represents areas where vegetation is
not stressed, red represents stressed vegetation.
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3.4.4 Root distribution analysis

The root structure of screwbean mesquite was consistent with previous literature indicating the
presence of a dimorphic root system of shallow lateral roots and deeper taproots accessing groundwater
(Fig. S3.8). A greenhouse experiment with seedlings on varying groundwater levels showed dependence
of the root structure on water tables (Fig. 3.7). The deepest root profile was observed at the seedling that
only received surface irrigation. Most root biomass existed in the upper (20 cm) soil layer, with a single
root extending to the bottom of the soil column at 70 cm depth. The shallowest root profile was observed
at the seedling grown on a constant water table. The root profile displayed a larger lateral spread with
roots ending at or slightly above (in the capillary fringe) the water table. The largest root profile was
observed at the seedling grown on a constant water table for half of the experiment, and a slowly receding
water table during the last half. Most root biomass was present in the first 40 cm of the soil, with several

roots extending down towards the receding water table.
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Figure 3.7. Root structure of three screwbean mesquite seedlings, grown on coarse sand with limited
capillary rise on three different water table scenarios: 1) surface irrigation (left), 2) a constant water table
at 40 cm depth (middle), and 3) a constant water table at 40 cm depth for 4 months, then a slowly
receding water table to 60 cm depth (right). Scale bar represents 10 cm.
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3.5 Discussion

Timing, regionality, and topographic control of vegetation mortality suggest riparian woodlands
in the southwestern United States are not spared from the effects of intensified drought. Unlike non-
riparian vegetation which suffer large areal mortality during a drought, riparian woodlands manifest
mortality after the drought ends, during the wet pulse that follows. Based on my analyses, I suggest a
conceptual model where exposure to intensified drought impacts the ability of riparian trees to survive

flooding.

3.5.1 Conceptual model

Root water uptake in the riparian environment is dominated by deep or surface roots depending
on groundwater level. Water uptake originates from deep roots near groundwater when water tables are
low (Fig. 3.8a). Oppositely, water uptake originates from surface roots when water tables are high (Fig.
3.8b). During this time, the lower root system is submerged in hypoxic groundwater and is inactive due to
oxygen stress. The positioning of the root system in regard to the water table, and therefore oxygen
concentrations, was confirmed for screwbean mesquite seedlings (Fig. 3.7). The root system was
partitioned in surface roots and deeper roots extending to the water table. Intensified drought can decrease
surface root activity through heat and water stress, similar to how surface roots of non-riparian trees are
damaged (Teskey et al., 2015; Martinez-Vilalta et al., 2019; Hammond et al., 2019). Plant health remains
stable during drought, as water uptake is satisfied by deep roots near the water table (Fig. 3.8c). However,
high water tables after drought cause both upper and lower root system to be inactive, resulting in die-off

when sustained long enough (Fig. 3.8d).
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Figure 3.8. Conceptual model of the relationship of the upper (near surface) and lower (near
groundwater) root system of groundwater dependent vegetation on a. low and b. high water tables during
a normal year, and on c. low and d. high water tables after a multi-year drought. Hypothesized root
activity is shown as green roots indicating active roots, and red roots indicating physiological inactive
roots.

Drought and heat stress can reduce or cease surface root water uptake. While the exact cause
remains unknown, drought could decrease surface root water uptake through significantly reducing root
hairs (Williams and Cooper, 2005), or affect the functioning of woody roots through for example suberin
formation. Suberin is a hydrophobic biopolymer that has been associated with drought response to reduce
water loss through roots. However, it also stops water from entering root cells during wet conditions,

delaying reactivation which is critical for plant survival during high water tables (Enstone et al., 2002;
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Bernards, 2002). Heavily suberized roots were observed in the upper root structure of tamarisk along the
Lower Virgin River, from which it took 4-5 weeks for new white roots to be grown (D.A. Devitt, personal

communication, May 15, 2024).

The proposed conceptual model is supported by previous studies who confirmed inactivity of
shallow roots during dry conditions. Williams and Cooper (2005) studied two stands of cottonwoods,
Populus deltoides, which are phreatophytes. One stand was located along an unregulated river with
frequent floods, the other stand along a regulated river without floods. They noticed upper root dieback in
the regulated river stand, in response to dry upper soils, which prevented the trees from responding to
temporary increases in soil moisture from an artificial flood. Likewise, Donovan and Ehleringer (1994)
found no response of shrubs to summer rains, indicating shallow root dormancy. Reduced shallow root
activity during low water tables will not cause major stress in riparian vegetation as deep roots are

responsible for water uptake. Instead, stress occurs when water tables are high.

After multi-year drought, damaged shallow roots cannot quickly grow rootlets and root hairs
needed for root water uptake. When a wet year follows a drought cycle, water tables can quickly rise to
maximum levels higher than observed during preceding years. For example, doubling of precipitation
along the Virgin River during non-drought conditions raised the water table up to 0.8 m (Fig. 3.5),
although a smaller water table rise is predicted after a drought cycle due to reduced soil moisture. During
high water tables, the plant will be unable to meet its water demands, causing stress, and, if sustained,
eventual death (Fig. 3.8d). The proposed drought-flood mechanism can explain observations related to

riparian woodland mortality, such as timing, regionality, and topographic control.

3.5.2 Timing die-off after a dry-wet cycle
Pronounced NDVI reductions occurred simultaneously at sites in Nevada and California during a

wet period that followed severe multi-year drought (Fig. 3.2-4). Most die-off occurred between 2010-
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2012, following the 2007-2010 drought and the wet water year of 2011. However, not all drought-flood
cycles resulted in die-off as riparian vegetation could recover from damages caused by the event. For
example, NDVI rapidly decreased between 2005-2007, but quickly recovered to levels observed before
the NDVI decline in the years after (Fig. 3.3). The 2005-2007 drought might not have damaged the

surface root structure to such an extent that vegetation could not recover.

3.5.3 Regionality of riparian woodland mortality

Riparian woodland mortality occurred at sites in winter precipitation dominated regions but was
absent from sites in monsoon dominated regions (Fig. 3.2; S3.1). Surface root damage occurs in summer
when the soil is dry and hot. As such, surface root damage is more likely to occur in winter storm
dominated systems where summer are hot and dry than in monsoon dominated systems where summers
are wet. If the surface root system is not damaged, a wet period following a multi-year drought will not
cause die-off. While die-off is a naturally occurring phenomenon in any forest and woodland, riparian
vegetation at sites in Arizona and New Mexico did not experience a regional die-off event in 2010-2012.
This is supported by a field study by Cowan et al. (2023) who observed no die-off in screwbean mesquite

along the Rio Grande.

3.5.4 Topographic and human control on woodland mortality

Riparian woodland mortality was locally affected by topography. On a local scale, all trees are
impacted similarly by drought, yet not all trees are impacted similarly by flooding and groundwater rise.
Low-laying areas next to rivers experience most flooding and groundwater rise, whereas vegetation on
higher elevation can be spared from most negative effects of groundwater rise (Fig. 3.6). Likewise,

Cowan et al. (2023) observed trees experiencing dieback were located closer to perennial surface water
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compared to trees that did not experience dieback. Additionally, plant density and soil hydraulic

properties could influence water table dynamics but were not tested here.

Riparian woodland mortality can also be affected by human controls. This can prevent mortality
in areas where die-off would otherwise be expected to occur. For example, riparian vegetation at Lake
Mohave, a reservoir on the Colorado River along the border of Nevada and Arizona, did not show stress
during any of the identified die-off events between 2000-2022 (Fig.S3.5b). Apart from runoff from
surrounding mountains, water levels in Lake Mohave are controlled by water released from upstream
Lake Mead. Water levels are therefore more stable than for example the Virgin and Muddy Rivers, which
are undammed. The lack of rapid water rise in Lake Mohave ensured the drought-flood sequence did not

occur, sparing riparian vegetation from die-off.

3.5.5 Implications and broader impacts

My findings suggest riparian woodland mortality can be caused through a drought-flood
sequence. Climate change is predicted to increase the frequency of extreme hydrological event
occurrences. For example, droughts are predicted to become more intense and longer lasting (Williams et
al., 2019; Overpeck and Udall, 2020), and precipitation events to become more erratic, leading to
increased frequency of flooding (Swain et al., 2018). This increases the chance a drought-flood sequence
occurs that will cause regional wide riparian woodland mortality. Changes in extreme hydrological events
are not limited to the United States. For example, the Amazon region has experienced increasing droughts

and floods (Marengo and Espinoza, 2016), as well as Australia (Moore, 2012).

Large-scale tree mortality can also be caused by biological factors such as pathogens and insect
outbreaks. For example, outbreaks of species of bark beetles have been shown to cause widespread
mortality in pine forests (Dobbertin et al., 2007; Creeden et al., 2014). Likewise, tamarisk die-off along

the Virgin River has been attributed to the tamarisk beetle, Diorhabda spp, which arrived at the lower
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Virgin River in 2009 (Liebert et al., 2016), and defoliation of tamarisk coincided with NDVI declines.
Additionally, screwbean mesquite die-off of has been attributed to the fungus, Neoscytalidium dimidiatum
(Cowan et al., 2023). However, observations of die-off cannot be explained by biological origin solely.
For example, not all vegetation in an area is affected, as shown by the topographic control on die-off (Fig.
3.6). It is possible the insect or canker was only successful on previously weakened vegetation, as
indicated by rapid declines in growing season NDVI. Climate change can increase the distribution of
pathogens and invasive species (Dukes et al., 2009). While biological factors are expected to be a
secondary cause to riparian woodland mortality, they can increase the likelihood a weakened tree dies

instead of recovers after a drought-flood cycle.

Increased riparian woodland mortality might be a global phenomenon in arid environments
experiencing intensified drought conditions. Woodland mortality can negatively impact riparian
ecosystems as they function as biodiversity hotspots, harboring a disproportionately high biodiversity for
their limited size (Stevens et al., 1977; Naiman et al., 1993). Additionally, riparian woodlands improve
water quality through filtering of sediments and potential pollutants (Naiman and Décamps, 1997), reduce
flooding and erosion by promoting infiltration (Simon and Collison, 2002; Thomas and Nisbet, 2007),
and act as long-term carbon sinks (Cierjacks et al., 2010). Going forward, additional changes in this small

yet important ecosystem should therefore not be overlooked.

3.6 Conclusion

Riparian woodland mortality in the southwestern United States suggests this ecosystem is more
susceptible to climate change than previously believed. Here, I introduced a mechanism explaining the
timing, regional, and local occurrences of mortality through a sequence of extreme hydrological events:
intense drought and flooding. Drought affects the ability of riparian vegetation to handle large seasonal
variations in groundwater depth, through reducing shallow root activity. Shallow roots are essential for

root water uptake during high water tables; reduced shallow root activity therefore leads to stress and
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mortality if sustained over many years. Tree mortality is expected to occur more frequently in riparian
ecosystems worldwide following increases in drought duration and intensity, and precipitation extremes.
Loss of dominant tree species will negatively impact riparian ecosystems as riparian woodlands harbor a

large biodiversity, improve water quality, and aid in erosion and flood control.
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3.8 Supplementary materials
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Figure S3.1. Monthly precipitation for a. Southern California (Tecopa, CA), with a winter-storm
dominated climate, and b. New Mexico (Las Cruces), with a monsoon dominated climate.
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Figure S3.2. Experimental setup to study the root distribution of three screwbean mesquite seedlings
under different groundwater level scenarios.

95



Table S3.1. Summary statistics and trend for NDVI of all study locations calculated for 1993-2023.

Location Name Coordinates Mean + SD Min-max Trend Slope
(p-value) (NDVI/year)
Ash Ashl*  36.4205N, -116.3336E  0.30+0.055 0.19-0.38 1.82E-04 -0.0044
Meadows
Ash2*  36.4191N, -116.3333E  0.40+0.075 0.26-0.52 4.59E-04 -0.0056
Ash3*  36.4186N, -116.3353E  0.41 +0.082 0.28-0.59 0.0063 -0.0060
Ash4*  36.4200N, -116.3326E  0.35+ 0.037 0.27-0.45 2.14E-04 -0.0025
Ash5 36.4010N, -116.2743E  0.32+0.034 0.25-0.38 0.14 -0.0013
Ash6*  36.3638N, -116.3010E  0.18 = 0.046 0.13-0.29 6.39E-05 -0.0037
Ash7*  36.3644N, -116.3016E  0.14 + 0.024 0.11-0.19 2.54E-04 -0.0017
Ash8*  36.4009N, -116.2997E  0.24 £ 0.065 0.14-0.35 0.023 -0.0043
Ash9*  36.4019N, -116.2993E  0.23 £0.065 0.15-0.35 0.0079 -0.0040
Ash10*  36.4274N, -116.3047E  0.27+0.073 0.19-0.41 4.19E-08 -0.0067
Shoshone Shol* 35.9814N, -116.2678E  0.34+0.056 0.23-0.42 0.0012 -0.0036
Sho2* 35.9809N, -116.2675E  0.29 + 0.069 0.17-0.39 3.25E-05 -0.0061
Sho3* 35.9798N, -116.2668E  0.28 £ 0.056 0.20-0.37 2.69E-04 -0.0047
Sho4* 35.9747N, -116.2662E  0.32+0.073 0.21-0.46 1.52E-07 -0.0070
Sho5* 35.9703N, -116.2602E  0.26 + 0.034 0.18-0.32 1.42E-06 -0.0031
Sho6 35.9662N, -116.2575E  0.19 +0.025 0.11-0.23 0.10 5.88e-04
Sho7* 35.9682N, -116.2602E  0.23 +0.057 0.14-0.32 2.83E-07 -0.0054
Tecopa Tecl* 35.8489N, -116.2191E  0.27+0.035 0.21-0.35 7.40E-04 -0.0027
Tec2* 35.8532N, -116.2214E  0.36+0.034 0.27-0.42 0.0024 -0.0024
Tec3* 35.8543N, -116.2248E  0.15+0.023 0.11-0.19 1.38E-04 -0.0018
Tec4* 35.8538N, -116.2234E  0.34+0.050 0.25-0.45 1.06E-07 -0.0050
Virgin VRI1* 36.7410N, -114.2133E  0.42+0.124 0.24-0.59 1.31E-06 -0.012
River VR2* 36.7222N, -114.2375E  0.42+0.182 0.13-0.63 1.79E-08 -0.015
VR3* 36.6517N, -114.3092E  0.42+0.182 0.17-0.64 1.35E-04 -0.015
VR4* 36.6233N, -114.3244E  0.44+0.156 0.20-0.63 0.020 -0.012
VR5* 36.6077N, -114.3267E  0.45+0.159 0.18-0.61 1.53E-05 -0.014
VR6* 36.5731N, -114.3294E  0.44+0.213 0.14 -0.65 1.75E-05 -0.019
VR7* 36.5464N, -114.3346E  0.39+0.191 0.11 -0.60 1.16E-06 -0.018
VRS 36.5027N, -114.3426E  0.18 —0.380 -0.43-0.72 0.19 0.015
Muddy MRI1 36.7155N, -114.7006E  0.39 + 0.084 0.24-0.62 0.91 0
River MR2* 36.6587N, -114.6473E  0.50 = 0.063 0.36-0.61 9.46E-05 -0.0042
MR3* 36.6570N, -114.6121E  0.28 £ 0.061 0.17-0.35 2.19E-05 -0.0044
MR4* 36.6556N, -114.6023E  0.48 —0.110 0.26 - 0.61 3.23E-05 -0.0090
MRS5* 36.6559N, -114.5967E  0.50 +0.072 0.36-0.60 8.99E-06 -0.0057
MR6* 36.6581N, -114.5876E  0.46 + 0.056 0.33-0.56 0.0022 -0.0025
MR7* 36.6295N, -114.4870E  0.37 + 0.064 0.25-0.46 1.93E-07 -0.0063
MR8* 36.6284N, -114.4832E  0.35+0.069 0.21-0.43 1.50E-04 -0.0050
MR9* 36.5378N, -114.4276E  0.39+0.118 0.22-0.56 1.57E-05 -0.011
MR10*  36.522IN, -114.4148E  0.51£0.125 0.32-0.66 1.64E-07 -0.011
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Arizona  AZ1**  33.9374N,-112.7012E  0.57 £ 0.065 0.40-0.67 8.19E-09 0.0060

AZ2 33.2684N, -112.1945E  0.58 £ 0.057 0.46 - 0.67 0.69 -4.76e-04
AZ3 33.2642N, -112.1928E  0.60 + 0.048 0.50 - 0.66 0.12 0.0015
AZ4**  33.0424N, -112.9215E 036+ 0.194 -0.18 - 0.61 0.043 0.0010
New NM1* 33.7903N, -106.8798E  0.39 +0.058 0.31-0.55 6.99E-05 -0.0044
Mexico NM2**  34.6703N, -106.7480E  0.56 = 0.068 0.30-0.66 0.0024 0.0038
NM3* 34.6715N, -106.7443E  0.49 +0.052 0.35-0.58 0.019 -0.0029

NM4**  32.8713N, -107.3004E  0.46 = 0.057 0.36-0.60 4.58E-06 0.0056
NMS**  32.8783N, -107.3002E  0.52 + 0.047 0.43-0.61 7.46E-05 0.0038

* Indicates a significant negative trend in growing season NDVI between 1993-2023 at a significance
level of 0.05.

** Indicates a significant positive trend in growing season NDVI between 1993-2023 at a significance
level of 0.05.
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Figure S3.3. Stacked bars of annual average normalized NDVI during the growing season (Apr 1-Oct 30)
for all studied sites in regions experiencing woodland mortality in winter storm dominated climate
systems for riparian vegetation along the Amargosa River in a. Ash Meadows, b. Shoshone, and c.
Tecopa, and along the d. Virgin, and e. Muddy Rivers, compared to vegetation sites along the f. Gila
River in New Mexico. Sites in Nevada and Arizona (a-€) show rapid decrease in NDVI values between
2011-2012, which was absent from the Rio Grande.
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Figure S3.4. Annual average NDVI during the growing season (Apr 1-Oct 31) for areas experiencing
riparian woodland mortality along the Amargosa River in a. Ash Meadows, b. Shoshone, and c. Tecopa,
and along the d. Virgin, and e. Muddy Rivers, compared to vegetation along the f. Gila River in New
Mexico. Sites in Nevada and Arizona (a-€) show rapid decrease in NDV1 values between 2011-2012,
which was absent from the Rio Grande. Sites a-c were dominated with screwbean mesquite, sites d-f with
tamarisk.
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Figure S3.5. Climatic variables for a riparian woodland along the Gila River, AZ. a. Average annual
normalized NDVI for the growing season (Apr-Oct). b. Monthly precipitation showing frequent peaks
representing monsoonal precipitation, c. Drought severity and coverage index, where 0 means none of the
area is experiencing drought, and 500 means the entire area is in exceptional drought, source = US

drought monitor.
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Figure S3.6. Average annual NDVI during the growing season (Apr-Oct) for riparian woodlands in a.
Ash Meadows, California, showing die-off between 2015-2017, and b. Lake Mohave, Nevada/Arizona,
showing no signs of mortality between 2011-2012.

Table S3.2. Drought and precipitation values associated with node 5 in the regression tree model,
showing most years with large decreases in NDVI are accompanied by above average precipitation (110
mm).

NDVI change Drought Precipitation Node number
3.0 226.8 83.6 5
-21.4 226.8 83.6 5
-5.6 226.8 83.6 5
-6.3 226.8 83.6 5
-4.8 226.8 83.6 5
-17.6 226.8 83.6 5
-22.6 226.8 83.6 5
-29.0 226.8 83.6 5
0 226.8 83.6 5
-12.0 226.8 83.6 5
0 226.8 83.6 5
-13.3 226.8 83.6 5
-3.1 226.8 110.0 5
-17.6 226.8 110.0 5
-28.6 226.8 110.0 5
-42.9 226.8 110.0 5
-46.4 226.8 110.0 5
-26.5 226.8 110.0 5
-34.0 226.8 110.0 5
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Figure S3.7. a. Mortality of riparian trees in the lower Virgin River showing patches of surviving trees

near the river. b. Elevation transect showing die-off is focused in topographic lows, where flood water
accumulates.
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Figure S3.8. Root structure of screwbean mesquite from a field excavation, showing lateral surface roots
and a taproot splitting off and moving laterally.
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CHAPTER 4 - DRYLAND ECOSYSTEMS

Soil moisture as driver for vegetation patterns created by the Western Harvester ant,
Pogonomyrmex occidentalis

4.1 Abstract

Dryland ecosystems contain vegetation patterns ranging from stripes to gaps and spots. Patterns
concentrate resources such as precipitation, allowing plants and insects to occupy environments where
existence otherwise would not be possible. Previous research indicates vegetation patterns emerge prior to
the ecosystem reaching its tipping point, at which abrupt and potentially irreversible shifts in ecosystem
states may occur. Patterns can be created through various mechanisms including self-organization and
vegetation clearing behavior of social insects. Understanding the driver of pattern formation is essential to
predict how the ecosystem responds to change. Here, I studied soil moisture as driver for creation of a
vegetation gap pattern created by the Western Harvester ant, Pogonomyrmex occidentalis. Harvester ants
create and maintain a 1-4 m barren circle, i.e., ant circle, around their nest. I hypothesize circle creation is
driven to meet moisture requirements for ant colony survival, by reducing moisture lost from the nest
through transpiration. I show this hypothesis is consistent with soil moisture differences between ant
circles and natural vegetation gaps, local circle occurrences on valley floors following drainage patterns,
regional occurrence of ant circles in the Great Basin but not Mojave Desert, as well as the presence of
abandoned circles in more arid regions. Increased aridity can lower soil moisture levels below the
threshold moisture requirement for harvester ants, causing the ants and their barren circles to disappear.
This can result in loss of plant and animal diversity, making the ecosystem more vulnerable to rapid state

change.
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4.2 Introduction

Vegetation patterns including stripes, gaps, and spots are a common phenomenon in dryland
ecosystems (Hardenberg et al., 2001; Deblauwe et al., 2008). Patterns concentrate resources, allowing
sensitive organisms such as plants and insects to exist in more arid environments than would be possible
on homogeneous vegetation (Klausmeier, 1999; Rietkerk et al., 2002; Van De Koppel and Rietkerk, 2004;
Sherratt and Lord, 2007). Drylands in the southwestern and western United States contain insect-created
vegetation patterns. These patterns consist of vegetation gaps constructed by the Western Harvester ant,
Pogonomyrmex occidentalis. Harvester ants are known ecosystem engineers who actively clear vegetation
around their nest, creating barren vegetation gaps of 1-4 m in diameter, hereafter ant circles (Sharp and
Barr, 1960; Clark and Comanor, 1975; Wu, 1990; Soule and Knapp, 1996; Viles et al., 2021). As they are
created by insects, ant circles differ from patterned vegetation where shrubs and other vascular plants self-
organize through positive feedback loops between plant growth and available water (Aguiar and Sala,
1999; Klausmeier, 1999; Rietkerk et al., 2002). Previous studies suggest patterned vegetation can indicate
an imminent ecosystem shift and sensitivity to climate change (Scheffer et al., 2001; Rietkerk et al.,

2004).

Ant circles serve as an extension of the ant nest. The nest consists of two parts, a system of
underground tunnels and galleries, and an aboveground mound. The underground part extends on average
to 1.4 m depth (Rogers and Lavigne, 1974) and contains granaries and nurseries. Ants overwinter in the
deeper parts of the nest when temperatures are low (Willard and Crowell, 1965), while the queen lives in
chambers at the bottom of the nest most of the year (Lavigne, 1969; Cole, 1994). The aboveground
mound is a conical structure with multiple chambers. Ant workers and the brood occupy the mound and
shallow chambers in summer (Lavigne, 1969), when higher temperatures aid brood development (Cole,
1994). While the exact functioning of the ant circle surrounding the mound remains unknown, previous
studies have indicated two main hypotheses for ant circle creation: to create a more favorable temperature

or soil moisture environment. Circles increase soil temperature by allowing unobstructed access to solar
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insolation warming of the nest (Wheeler, 1960; Wu, 1990; Bucy and Breed, 2006). Circles also promote
higher soil moisture levels by reducing transpiration from the circle (Wight and Nichols, 1966; Laundre,

1990).

Understanding driving forces behind ant circle creation is necessary to predict how the pattern
and ecosystem may respond to environmental change. Vegetation patterns can indicate an ecosystem is
approaching its tipping point (Scheffer et al., 2009). A tipping point is a threshold after which abrupt and
often irreversible change may occur, where an ecosystem shifts to an alternative stable state (Scheffer et
al., 2001; Rietkerk et al., 2004). For example, in semi-arid ecosystems, drought and land use change can
increase environmental stress until the tipping point is crossed, and the system shifts from a vegetated

state to a desert state (Reynolds et al., 2007; D’Odorico et al., 2013).

Below, I elaborate the moisture hypothesis as driver for vegetation patterns created by the
Western Harvester ant. Ant colonies are sensitive to low soil moisture levels as ant brood is desiccation
sensitive (Wheeler and Wheeler, 1976). Queen survival, health, and brood production are also positively
linked to higher soil moisture (Johnson, 2021). At the same time, plants inhabiting xeric regions can be
highly desiccation tolerant. By the end of the growing season, soil moisture around their roots reaches
extreme low levels (Drivas and Everett, 1988; Kolb and Sperry, 1999). I hypothesize that 1) vegetation
clearing around the ant nest reduces root area and root water uptake from within the ant circle, leading to
higher soil moisture in the circle, 2) this higher moisture environment will be sustained throughout the
growing season, 3) ant circles will not occur in regions where soil moisture is too low, and 4) increased
aridity may lead to empty, hereafter abandoned, ant circles due to colony mortality. To test these
hypotheses, I studied soil moisture and root density differences between ant circles and naturally
occurring vegetation gaps, local occurrence of ant circles in watersheds, regional occurrence of ant circles
in the Great Basin and Mojave Desert, and the occurrence and spatial pattern of abandoned ant circles in

more arid regions.
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4.3 Methods

I studied the driving force behind ant circle creation and its response to climate change through a

combination of field measurements, numerical simulations, and remote sensing.

4.3.1 Study area

Physical measurements on active ant circles were made in the Muleshoe Valley in eastern
Nevada, United States (Fig. 4.1; 38°12°38.7”N 114°48°54.4”W). This site is located at an elevation of
1637 m within the Great Basin Desert, approximately 44 km northwest of Pioche, Nevada. The main
vegetation is Big sagebrush, Artemisia tridentata, a woody shrub (approximately 1 x 1 m), and an annual
ragweed, Ambrosia sp. (approximately 0.3 x 0.3 m). Soils consist of silty to sandy loam (Soil Survey
Staff, 2024), with circles located on alluvium of basin floors and along washes. Colonies of the Western
Harvester ant, Pogonomyrmex occidentalis, are responsible for ant circle creation at this site (Wheeler and
Wheeler, 1986). The climate is classified as cool semi-arid (K&ppen, 1936; Peel et al., 2007), with mean
annual precipitation of 224 mm (Western Regional Climate Center, 2023c). Winters are cold, with most
precipitation falling as snowfall, whereas summers are generally hot and dry (Comstock and Ehleringer,

1992; Petersky and Harpold, 2018) (Fig. S4.1).

Ant circles at the study site were compared to circles at 160 locations throughout the western
United States using satellite imagery (Fig. S4.2). Locations were selected based on resemblance to the
study site to 1) contain the Western Harvester ant, based on the species distribution and reported
occurrences in the western and southwestern United States (Cole, 1932, 1994; Sharp and Barr, 1960;
Lavigne, 1969; Nagel and Rettenmeyer, 1973; Rogers and Lavigne, 1974; Clark and Comanor, 1975;
Wheeler and Wheeler, 1986; Carlson and Whitford, 1991; Cole and Wiernasz, 2000), 2) match the
vegetation type at the study type, based on the distribution of sagebrush (Kartesz, 2015), 3) contain
similar geomorphological structures, 4) a similar climate, based on a drought index < 0.5 (Zomer et al.,

2022), and 5) contain circular vegetation gaps.
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Figure 4.1. a. Location of the field study site in Nevada, United States, b. Drone image showing the
distribution of ant circles in both annual vegetation (light green) and sagebrush (dark green); the scale bar
represents 40 m. c. Ant circle surrounded by sagebrush, including a central nest approximately 0.3m in
height.

4.3.2 Field measurements
Soil texture, moisture, temperature, and root area were measured in and around ant circles at the

study site in Nevada.

4.3.2.1 Soil texture
Soil texture was measured to verify the texture class indicated by the Soil Survey Geographic

Database (silt loam to sandy loam ((Soil Survey Staft, 2024)). Four soil samples were collected from 0.1-
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0.2 m depth in October 2019: one from an ant circle and one from a natural vegetation gap, in annual and
shrub-dominated vegetation. Soil samples were pretreated using a 1% surfactant solution. Soil texture was
measured using laser particle size analysis (Malvern Mastersizer 3000), according to ASTM C1070.
Analysis was carried out by the Soil Characterization and Quaternary Pedology Laboratory (Desert

Research Institute, Reno).

4.3.2.2 Soil moisture and temperature

Soil moisture was measured inside ant circles, along vegetated circle margins, and in natural
vegetation gaps. Gravimetric soil moisture was measured for 14 samples at a depth of 0.1-0.2 m inside ant
circles and natural vegetation gaps in shrub and annual dominated vegetation during field trips in May,
August, and October 2019. Three samples were collected from each circle and natural vegetation gap
during August and October, one sample was collected from each site during May. For ant circles, samples
were collected at the halfway point between the circle margin and ant nest. For natural vegetation gaps,

samples were collected from the gap center.

Volumetric soil moisture was measured in two ant circles, one in shrub and one in annual
dominated vegetation during the growing season from May 15 to July 10, 2019, using time-domain
reflectometry (TDR) soil moisture sensors (Pico Soil Moisture Probe, MESA Systems Co, Stonington, CT
06378, USA), with a rod length of 0.16 m and rod spacing of 0.04 m. Sensors were buried at 0.4-0.6 m
and 0.8-1.0 m depth inside each ant circle, at the midpoint between the circle edge and ant mound, and
under the canopy of vegetation on the circle margin. Sensors were vertically inserted at the bottom of
0.8m and 0.4m dug holes. Data collection was started immediately after sensor installation; therefore, soil
disturbance will have occurred during the installation process and will have impacted results. Soil
temperature was measured through a temperature sensor on the probe body of each TDR sensor.
Statistical differences between soil moisture and temperature at 0.5 m and 1 m depth in ant circles and

under vegetated margins were tested using the non-parametric, two-sided Wilcoxon rank sum test.
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4.3.2.3 Root area

To test the hypothesis that ant circle creation reduces root area, I calculated total root area in ant
circles, natural vegetation gaps, and near vegetation. The results of this analysis will show how ant circles
impact total root area and how this differs with natural vegetation gaps. Root area was calculated near the
soil surface, for these roots impact moisture in the upper part of the ant nest during summer. 24 Soil
samples were collected from in and around three ant circles in November 2023. Samples were collected
from 0.1-0.2 m depth after removing the top 0.05 m of soil to prevent debris from entering samples. Roots
were separated from the soil using a 2mm sieve to obtain medium root biomass (e.g., Levillain et al.,
2011). Root samples were spread out and photographed against a white background. Resulting images
were binarized and scaled to estimate the area covered by roots per kg of dry soil. Significance of

differences in root area was evaluated using unpaired t-tests.

4.3.3 Numerical simulations

To test the hypothesis that elevated soil moisture levels are maintained inside ant circles through
the end of the growing season, I modeled the spatial-temporal distribution of soil moisture in ant circles
and natural vegetation gaps using HYDRUS 3D (Simtinek et al., 2016; v.5.02). This finite element model

solves Richard’s equation for water flow in variably saturated porous media (Eq. 4.1),

2o 2 [0 E2)] 4 [0 B2+ £ (RO E21)] -5 v

where 6 represents volumetric soil moisture (m?* m™), # is time (s), z is depth (m), K is the unsaturated
hydraulic conductivity (m s™), % is the pressure head (m), xyz are the spatial coordinates (m) and S is a

sink term that accounts for root water uptake (RWU) (m>m3s"). RWU was simulated as a function of
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potential transpiration, root distribution and pressure head (Feddes, 1982; Simtinek and Hopmans, 2009)

(Eq. 4.2),

s(th,x,y,z,t) = a(h,x,y,z,t)b(x,y,2,t) LT, (Equation 4.2)

where s is the potential root water uptake at pressure head % (s™), at location (x,y,z), at time ¢, a is the
dimensionless stress response function of the pressure head 4 (0 < o < 1) accounting for reduced potential
root water uptake due to moisture stress, b(x,),z,¢) is the normalized root water uptake distribution to
account for a root system with an arbitrary shape (m™), L, the soil surface associated with transpiration
(m?), and T, the potential transpiration rate (m s™).

Numerical simulations were performed for a 1 m deep, three-dimensional angular segment of an
ant circle and surrounding vegetation with a 4 m radius (Fig. S4.3). The soil domain was discretized into
elements of 0.05 m, leading to a total of 40,434 elements and 10,440 nodes. Soil hydraulic properties in
the non-hysteretic van Genuchten equation were parameterized from field data. Residual, 6r, and
saturated, 6s, soil water contents were estimated from grain size distributions of soil samples collected at
20cm depth inside ant circles, using the Neural Network Prediction tool in HYDRUS, based on pedo-
transfer functions of the Rosetta model. Parameters o and » in the soil water retention function were
optimized using TDR volumetric soil moisture from 0.5 m depth through inverse modeling in HYDRUS
1D (Simtinek et al., 2013) using the Levenberg-Marquardt algorithm. HYDRUS 1D in the vertical
direction was used for parameter optimization as TDR data was collected vertically from two depths and
vertical soil moisture movement was assumed dominant over horizontal movement.

The upper surface of the model was defined as a time-variable atmospheric boundary and the
lower boundary was set to free drainage (deep water table). The outside of the soil segment was defined
as no flux boundary, assuming processes at this boundary minimally impact soil moisture inside the ant

circle. Assuming radial symmetry allows the vertical sides of the slice to be set as no flux boundaries. The
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atmospheric boundary condition (precipitation, evapotranspiration) was estimated from meteorological
data collected at a weather station in Pioche, Nevada, at an elevation of 1806 m (Western Regional
Climate Center, 2023c) (Table 4.1; Fig. S4.4). This station is located 44 km from the research location and
separated by a mountain range with highest elevation of 2,722 m. Potential evapotranspiration was

calculated according to the FAO 56 method (Allan et al., 1998) (Eq. 4.3),

ET. = ET, * K, (Equation 4.3)

where ET, is crop evapotranspiration (mm day™), K. is the crop coefficient [-], taken as 0.3 to reflect

sagebrush (Pereira et al., 2023), and ET, is reference evapotranspiration (mm day™') (Eq. 4.4),

900
0.408 A (Ry—G)+vy T+273 U, (es—eq)

Blo = Equation 4.4
? A+y (1+0.34 uy) (Equation 4.4)

where R, is net radiation (MJ m d!), G the soil heat flux (MJ m?2 d!), y the psychrometric constant (kPa
°C), T'is mean daily air temperature at 2 m height (°C), u> is wind speed at 2 m height (m s™), e, is
saturation vapor pressure (kPa), e, is actual vapor pressure (kPa), and 4 the slope of the vapor pressure

curve (kPa °C™), calculated as (Eq. 4.5) (Zotarelli et al., 2015).

4098 [ 0.6108 exp(7rar” )]
= : (Equation 4.5)
(T+273.3)2
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Potential evaporation for barren soil inside the ant circle was simulated using HYDRUS 1D and
site-specific parameters (Table 4.1;S4.2). Potential evaporation was then subtracted from the crop
potential evapotranspiration to obtain potential transpiration. The numerical model was constructed from
03/01/2019 to 09/30/2019, with the first two months used as burn-in time to establish representative
spatial distributions of soil moisture in and around the ant circle. Model performance was evaluated by
calculating the R-squared and mean absolute error (MAE) of measured and modeled soil moisture during
the period of measured TDR soil moisture data (05/15/2019 — 07/10/2019). Modeled soil moisture was
obtained from observation nodes at 0.5 m depth at the halfway point between the ant mound and circle
edge, and one node 0.15 m from the modeled vegetation. A more detailed description of the specific

settings used for the HYDRUS model is available in the supplementary information.

Table 4.1. Summary of meteorological data and soil hydraulic properties, listed in units as required by
HYDRUS software.

Parameter Unit Range (min-max) Mean £+ SD Source
Temperature max °C 6.1-31.7 232+6.7 WRCC, 2023¢
Temperature min °C -0.6-16.7 94+52 WRCC, 2023¢
Precipitation cm/d 0-3.2 02+0.5 WRCC, 2023¢
Wind km/d 108.1-332.2 193.0 £ 63.2 WRCC, 2023¢
Radiation MJ/m*d  4.6-31.5 24.6+6.7 WRCC, 2023c
Humidity % 15-90 39.8+21.1 WRCC, 2023¢
Residual soil water - 0.03 Simtinek et al., 2016
content

Saturated soil water - 0.4 Simtinek et al., 2016
content

a 1/cm 0.03"

n - 3"

Saturated hydraulic cm/d 52.6 Li et al., 2004
conductivity

Tortuosity parameter - 0.5 Simtnek et al., 2016

* Value was parameterized through inverse modeling.
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4.3.4 Remote sensing

To test the hypothesis that soil moisture is an important driver for ant circle occurrence, I
analyzed the regional and local distribution of ant circles using Google Earth Pro. The results will show
how climatic differences impact regional ant circle distribution, and how topography and geomorphic
features impact local ant circle distribution. Ant circles or barren circular structures were analyzed in 160
locations throughout the western and southwestern United States. Locations were selected to match the
study site based on species distribution of the Western Harvester ant, vegetation type, geomorphology,
drought index, and presence of ant circles or circular barren gaps, as observed through satellite imagery

(Fig. S4.6).

To test the hypothesis that increased aridity can lead to abandoned ant circles, I analyzed the
spatial patterns of ant circles and abandoned circles using the Pair Correlation Function (PCF). The results
of this analysis inform how the spatial pattern of abandoned circles matches the pattern of active circles.
Abandoned circles were defined as barren circles similar in size and circular to elliptical shape as ant

circles, but without a central ant mound.

The PCF quantifies the probability of finding points separated by a specific distance, » (Satoh,

2003). This test calculates the most common distance between ant circles (Eq.4.4) (Baddeley et al., 2015),

Kr(r)
2nr

g(r) = (Equation 4.4)

where 7 is the search radius and K’ is the derivative of K(r), also known as Ripley’s K function to estimate

the number of points in an area surrounding a selected point, calculated as (Eq. 4.5),

K(r) = ﬁ IINUCTRSILT (Equation 4.5)
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where a is the area of the search window, n the number of data points in the search window, d; the
distance between the i and j™ point, with I(d; < r) an indicator that equals 1 if d; < r, and e; the edge
correction for when part of the search window falls outside the study area (Dixon, 2001). G(r) of 0
indicates no points are separated by the specific distance 7; at large distances, g(r) moves towards 1. PCF
analysis was carried out using the pcf'and envelope functions in the Spatstat Package in RStudio (v4.2.2;
R Core Team, 2022). The envelope function creates simulation envelopes (mean + standard deviation) to
test spatial pattern against 5000 randomly created point patterns, generated of similar number of points as
the original point pattern (Baddeley et al., 2015; v2.3-4). Ant circles and abandoned circles were
geospatially marked on plots of minimally 400 x 400 m in QGIS and imported into RStudio as spatial

point patterns.

4.4  Results

In this study, I studied soil moisture as driver for ant circle creation by the Western Harvester ant
through field measurements, numerical simulations, and remote sensing. First, [ used field measurements
to compare soil moisture, soil temperature, and root density between ant circles, natural vegetation gaps,
and vegetated circle margins. Second, I constructed a numerical model to study the fate of soil moisture in
ant circles during the growing season. Last, I used remote sensing to study the regional and local

distribution of ant circles, and the effect of increased aridity.

4.4.1 Field measurements

4.4.1.1 Soil texture
All measured soils were classified as sandy loams (Table S4.1). Within that classification, soils

within the ant circles consistently showed more fines (silt, clay) than those in the vegetation gaps.
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4.4.1.2 Soil moisture and soil temperature

Average gravimetric soil moisture at 0.2 m depth inside ant circles was significantly higher than
soil moisture in naturally occurring vegetation gaps for shrubland (p = 0.002, n = 7, unpaired t-test) (Fig.
4.2a; Table S4.2), and annual vegetation (p = 0.03, n = 7, unpaired t-test) (Fig. 4.2b; Table S4.2). At the
end of summer and the growing season (August 18 and October 3), soil moisture inside ant circles
averaged 7-8%, compared to 4-5% inside natural vegetation gaps. For shrubland, this difference was
statistically significant (p = 0.009, n = 3 for August and p = 0.02, n = 3 for October), for annual

vegetation, the difference was not statistically significant (p = 0.13, n = 3 for August and p=0.07, n=3

for October).
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Figure 4.2. Gravimetric soil moisture from 0.1-0.2 m depth for ant circles and natural vegetation gaps in
a. sagebrush dominated vegetation, and b. annual dominated vegetation. Error bars display standard
deviation with n = 3 for August and October, and n = 1 for May. * Represents a significant difference
between samples at a confidence level of 0.05, ** at a confidence level of 0.01.
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Daily averaged volumetric soil moisture at 0.5 m and 1 m depth inside the ant circle, halfway
between the mound and circle edge, was significantly higher than soil moisture underneath vegetation at
the circle margin for most of the measured timeframe, with means at 0.5 m depth of 9.3% and 8.1%, and
minimum soil moisture of 8.0% and 6.8%, respectively (p = 4.8 x 10~ for 0.5 m depth, p = 3.5 x 10% for
1 m depth, Wilcoxon signed-rank test) (Fig. 4.3, Fig. S4.7). The highest soil moisture levels of 10%
volumetric soil moisture were reached at the end of spring, after multiple precipitation events. Through
summer, precipitation was low and soil temperature increased, following air temperature increases (Fig.
4.3ab). Soil temperature inside the ant circle was significantly higher than underneath the vegetated
margin, with mean temperatures of 19.4 °C and 16.1 °C, respectively (p = 6.7 x 10~ for 0.5 depth, p =
0.0073 for 1 m depth, Wilcoxon signed-rank test) (Fig. 4.3b; Fig. S4.7). Soil moisture on the circle margin
decreased in two phases; an initial fast decrease followed by a gradual decrease (Fig. 4.3¢). Soil moisture
decrease in the circle was slow and gradual throughout summer. By mid-summer, soil moisture levels at

0.5 m depth in the ant circle remained 1.4% higher relative to those near vegetation.
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Figure 4.3. Precipitation, air temperature, and daily TDR averages from 5/15/2019 to 7/10/2019. a. Daily
precipitation from a weather station in Pioche, NV (Western Regional Climate Center, 2023c). b. Daily
averaged soil temperature at 0.5 m depth inside the ant circle and under vegetation canopy near the circle
(left axis) and air temperature (right axis) from a weather station in Pioche, NV (Western Regional
Climate Center, 2023c). c. Daily averaged volumetric soil moisture at 0.5 m depth inside the ant circle
and under vegetation canopy near the circle, with soil moisture significantly different in timeframes A and
C (p < 0.05), and not significantly different in B (May 29 — June 08) (p = 0.06).

4.4.1.3 Root area

Roots were present throughout natural vegetation gaps, ant circles, and underneath the ant mound
(Fig. 4.4). Root area varied between 10.0 — 72.9 cm?/kg soil, with highest values occurring closest to
vegetation, and lowest values occurring inside the ant circle. Root area decreased moving away from the
vegetation into either the natural or ant created gap, with root area significantly different between

sampling locations (p = 0.003, one-way ANOVA test). Root area underneath vegetation was significantly

118



higher in the ant circle (p = 0.0005, n = 15 when comparing groups a and b in Fig. 4.4), but not
significantly different from natural vegetation gaps (p = 0.07, n = 3). In all three sampled ant circles, root

area directly underneath the ant mound was higher than the soil directly next to the mound.
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Figure 4.4. Distribution of root area per 1kg of soil from 0.2 m depth in a natural vegetation gap and an
ant circle. Root area was highest closest to the sagebrush surrounding the natural vegetation gap and ant
circle. Root area decreased when moving away from the vegetation, with the largest decrease in root area
occurring right before the ant nest. Each datapoint is the average of 3 samples. Group a represents
vegetation, group b the inside of the ant circle, with statistically different root area (p = 0.0005, n = 15).

4.4.2 Numerical simulations

Soil moisture inside ant circles and natural vegetation gaps was numerically simulated to study

the fate of soil moisture during the growing season. Daily averaged soil moisture was obtained from
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observation nodes at 0.5 m depth inside an ant circle (halfway point between the ant mound and circle
margin), a vegetated circle margin (0.15 m from the simulated plant), and inside a natural vegetation gap
(center). The constructed model simulated moisture patterns as observed by TDR data, with R-squared
values of 0.60 and 0.75 for the inside of the circle and vegetated circle margin, respectively. The model
generally predicted soil moisture around 8% correctly, but overpredicted soil moisture levels higher than
8-10% and underpredicted values lower than 7-8%, with a mean absolute error of 0.36% inside the circle

and 0.45% on the vegetated circle margin (Fig. 4.5).
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Figure 4.5. Model performance for simulating soil moisture a. inside an ant circle and b. on the vegetated
circle margin at 0.5 m depth using HYDRUS 2D, from May 15, 2019 to July 10, 2019. Model data is

compared to volumetric soil moisture measured at 0.5 m depth inside and outside the circle, yielding
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mean absolute error of 0.36% for inside the ant circle, and 0.45% for on the circle margin. Precipitation
data added for reference from a weather station in Pioche, NV (Western Regional Climate Center, 2023c).

Simulated soil moisture of the entire model domain ranged from 4.0-14.5% between 5/1/2019 and
9/30/2019. Soil moisture was highest in spring, with similar surface soil moisture inside the ant circle and
natural vegetation gap following precipitation events (Fig. 4.6a; Fig. 4.7a). Progressing into summer, soil
moisture rapidly declined around vegetation to 5.5-6.0% at 0.5 m depth directly underneath vegetation,
following high evaporation and RWU (Fig. 4.7bc). Soil moisture was higher inside the ant circle and
natural vegetation gap, with levels up to 9.2% and 6.6% at 0.5 m depth, respectively (Fig. 4.6b). At the
end of the growing season, soil moisture levels up to 7.1% were still present underneath the ant circle at
0.5 m depth, whereas soil moisture in the natural vegetation gap was reduced to 4.0% (Fig. 4.6¢), and
water movement across system boundaries had been greatly reduced (Fig. 4.7). Pore-water velocity also
rapidly decreased as soil moisture decreased (Fig. S4.8). Horizontal water movement was orders of
magnitude lower than vertical water movement, with maximum velocities of 3.3x10~ ¢m day™ in July and

9.3x10™* cm day™! in September.
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Figure 4.6. Simulated soil moisture levels through the growing season, showing faster moisture loss from
vegetated areas and natural vegetation gaps compared to the ant circle. a. Day 83 (5/22/2019), b. Day 132
(7/10/2019), and c. day 214 (9/30/2019). Locations of vegetation and ant mound added for reference.
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Figure 4.7. Daily averaged mass movement across system boundaries, showing high a. infiltration, b.
evaporation, c. root water uptake (RWU), and d. drainage in spring and early summer, which all decline
rapidly throughout the progression of summer.

4.43 Remote sensing
Remote sensing was used to study the regional and local distribution of ant circles, and the effect
of increased aridity. At the regional scale, ant circles were found in high density on valley floors of the

Great Basin but were absent to the south in the Mojave Desert (Fig. S4.9). At the local scale, ant circles
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populated valley floors, but were absent from higher elevations. The circles tended to contrentrate along

drainage paths, despite the apparent homogeneity in vegetation (Fig. 4.8; Fig. S4.10).
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Figure 4.8. Example of distribution of ant circles linked to drainage features in the landscape (location =
38.69511, -116.0231), where a continuously vegetated area (left) is intersected by a drainage feature

(right). Ant circle occurrence is closely related to the drainage feature, and b. generally occupies the
lower parts of the landscape.
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Vegetation gaps similar to ant circles but without harvester ants were identified near the southern
border of the Great Basin (Fig. S4.9). Near the study site, vegetation gaps were identified without
harvester ants or mound structure; however, gravels were present in the center of vegetation gaps (Fig.
4.9a). Further south, circles were starting to get revegetated by annual vegetation (Fig. 4.9b). Circles
vegetated with shrubs were also identified, which were still recognizable from satellite imagery (Fig.

4.9¢).

The spatial pattern of active circles was compared to potentially abandoned circles using the pair
correlation function. If a barren circle was previously an active circle, then the spatial pattern of
abandoned circles will be similar to that of active circles, as the distribution of nests of social insects is
determined by colony competition for resources and territoriality (Levings and Traniello, 1981; Ryti and
Case, 1992; Barton et al., 2009; Grohmann et al., 2010). The spatial signal of active ant circles differed
between locations (Fig. 4.10). Most distinct peaks in the pair correlation function were found at sites on
valley floors with constant topography. For these sites, the highest probability for distance between ant
circles was 15-17 m (Fig. 4.10 a-b; Table 4.2), consistent with Tarnita et al. (2017) for Pogonmyrmex
barbatus nests. However, site characteristics were rarely homogenous, and the spatial pattern of circles in
landscapes with drainage features ranged between 20-40m (Fig. 4.10 c-d), with peaks occurring around
30 m. Vegetation gaps that could be abandoned ant circles showed a similar range in the spatial pattern
between 20-40m (Fig. 4.10 e-f), with peaks at 30 m (Table 4.2). Potentially abandoned circles were
located within the elevation range observed for active ant circles and similar vegetation density, as

observed through satellite imagery and fieldwork.
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Figure 4.9. a. Abandoned circle near the study site that still contains pebbles that used to make up the ant
mound (location = 38.33210, -115.0552), b. circles revegetated with annuals (location = 38.31905, -
115.0667), c. circles revegetated with shrubs. While circles are hard to distinguish from a closeup view,
an aerial view still shows the general distribution of circles (location = 38.7820804419, -114.541231585).
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Figure 4.10. Pair correlation function showing the spatial pattern of active ant circles (a-d) and
abandoned circles (e-f), with peaks representing the most frequent distance between circles. Peaks of
abandoned circles (e-f) and active circles on heterogeneous landscape (c-d) were found at 30 m. The
shaded area represents the area associated with complete spatial randomness for each point pattern.
Locations = a = 38.5204414411, -115.208540217, b= 38.1891740069, -114.818573473, c =
41.5811214203, -115.864845316, d = 38.5120280337, -115.215266479, e = 38.2675611111, -
115.047262095, f = 38.3227895738, -115.056146503.
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Table 4.2. Spatial pattern analysis of active and abandoned circles.

Number Circle type Plot size (m) Number of Elevation (m) g(r) max
circles (m)

1(a) Active 450 x 450 864 1,625 15.8

2 (b) Active 400 x 400 476 1,619 16.6

3 (c) Active 500 x 500 407 1,967 28.6

4 (d) Active 420 x 420 256 1,634 32.4

5(e) Empty 500 x500 309 1,745 28.7

6 () Empty 900 x 900 1037 1,659 31.2

4.5 Discussion

Evidence presented in this study supports the soil moisture hypothesis of ant circle creation where
higher moisture levels are maintained in the ant circle by removing nearby vegetation. Soil moisture as
driver for circle creation affects the climatological response of the vegetation pattern, where increased
aridity may lead to regional wide circle abandonment and pattern disappearance following ant colony

mortality.

4.5.1 Threshold for vegetation gaps created by harvester ants

Soil moisture is an important driver for vegetation patterns created by harvester ants. As such, the
threshold for this pattern is impacted by the minimum soil moisture required for ant colony survival. This
moisture minimum is reached at the end of the plant growing season after months of high rates of
evapotranspiration and little precipitation. Low soil moisture levels can be lethal to ant larvae as their
cuticle is not yet fully developed (Wheeler and Wheeler, 1976). Additionally, queen survival and brood
production are also positively correlated to higher soil moisture levels (R. A. Johnson, 2021 for

Veromessor pergandei) and queens are often located in the lowest and wettest parts of the nest (Cole,

1994).
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Soil moisture levels inside ant circles were significantly higher compared to natural vegetation
gaps (p = 0.002 for shrubland, p = 0.03 for annual vegetation) (Fig.4.2). The minimum soil moisture at
0.1-0.2 m depth inside the ant circle was 8% compared to 4% in natural vegetation gaps. While harvester
ant nests can reach depths of 1.4 m (Rogers and Lavigne, 1974), during spring and summer, ant brood is
frequently placed in the mound, which is used as incubator (Cole, 1994). Although the threshold moisture
for western harvester ant colony survival is currently unknown, it is met at 8%, but not at 4% soil
moisture. This is supported by Johnson (1998; 2000) who found higher mortality of brood, workers, and

alate females of P. rugosus and P. barbatus under desiccating conditions.

While plants on ant circle margins were further apart compared to natural vegetation gaps, roots
were found through the entire radius of the ant circle (Fig. 4.4). Total root area at 0.1-0.2 m depth was
highest near vegetation and decreased when moving away into an ant circle and natural vegetation gap,
with lowest root area measured inside ant circles. Counterintuitively, root area directly underneath the ant
mound was higher than the soil sample taken next to the mound. This was likely caused by seed

germination during spring, before seedlings are killed by ants.

Reduced root water uptake inside ant circles limits soil moisture loss through plant transpiration.
Additionally, textural differences between ant circles and natural vegetation gaps can impact soil moisture
levels. Fine grained soils are characterized by higher water retention leading to higher soil moisture than
coarse grained soils (e.g., Fernandez-Illescas et al., 2001). Ant circles contained slightly higher silt and
clay contents than natural vegetation gaps (Table S4.1). Added effects of soil texture on ant circle
microenvironments and local distribution patterns likely occur but were not tested in this study. Reduced
root water uptake combined with increased water retention caused soil moisture levels inside ant circles to
be consistently higher than soil moisture near vegetation and in naturally occurring vegetation gaps during

the growing season (Fig. 4.11).
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Natural vegetation gap Ant circle
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Figure 4.11. The effect of an ant circle on soil moisture and root density. Spacing in vegetation created by
the ant circle significantly reduces root density inside the circle, therefore reducing root water uptake
causing elevated soil moisture levels, as shown by blue shading. Roots modified from Schroeder and
Johnson, 2018.

4.5.2. Numerical modeling of moisture dynamics in ant circles

Numerical modeling highlighted the importance of the ant circle to create favorable moisture
conditions for harvester ants. The model confirmed elevated soil moisture levels were maintained inside
ant circles through the end of the growing season. While elevated soil moisture conditions were initially
also present in the natural vegetation gap, soil moisture at 0.5 m depth was reduced to 4% by the end of
the growing season, compared to soil moisture levels up to 7% inside the ant circle (Fig. 4.6). The three-
dimensional triangular model domain allowed for evaluation of root water uptake from neighboring
vegetation while accounting for increased horizontal pore-water flow velocity near the center of the ant
circle. Construction of the HYDRUS model allowed for model calibration during the period of available
continuous soil moisture data, to evaluate moisture dynamics through the end of the growing season.

Overall, the model aided in understanding moisture dynamics inside and surrounding ant circles during
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the growing season, yet there are limitations to the model as several assumptions were made regarding the

soil pore structure, hydraulic model and meteorological data used.

Soil hydraulic material properties were assumed to be vertically and horizontally homogenous.
However, large spatial heterogeneity exists in soil pore structures. This affects parameterization of
hydraulic material properties for the soil moisture retention curve and the unsaturated hydraulic
conductivity, and therefore water movement and soil moisture levels (Vereecken et al., 2007; Vogel,
2019). Soil hydraulic properties are expected to vary with depth; using surface layer soil hydraulic
properties could therefore have inaccurately simulated soil moisture in deeper soil layers. Additionally,
saturated hydraulic conductivity and soil hydraulic parameters were estimated from the grain size
distribution using the built-in HYDRUS neural network tool, based on pedo-transfer functions of the
Rosetta model. This model estimates soil hydraulic parameters using neural networks and soil parameters
from various databases and reference soils (Schaap et al., 1998). Uncertainty in the estimated parameters
will have occurred as only grain size distribution was included as input, as opposed to also including bulk
density and soil organic matter, which has been identified to yield most accurate parameters (Schaap et

al., 2001).

Soil water movement was described through the Richard’s equation using the unimodal van
Genuchten model to describe the shape of the water retention curve. This method does not consider
macropores and preferential flow during saturated conditions (Van Genuchten, 1980; Durner, 1994).
Macropores can be created by soil fauna, plant roots, and cracks and fissures in for example clay rich soils
(Beven and Germann, 1982). Such structures can cause non-uniform flow with faster infiltration rates
than predicted by the Richard’s equation (Beven and Germann, 2013). Higher infiltration rates could have
occurred near sagebrush and below the ant mound, as the tunnels and dug up soil can create preferential
flow paths and reduce bulk density (Laundre, 1990). Preferential flow paths would increase soil moisture

heterogeneity.
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Meteorological data used in the model was obtained from a weather station in Pioche, Nevada, 44
km from the study site. The weather station and study site are separated by a mountain range with highest
elevation of 2,722 m. As mountainous landscapes can create spatial variability in precipitation, the data
obtained from Pioche might not have accurately represented precipitation at the study site. Input of
precipitation values exceeding actual precipitation at the study site could have overpredicted soil moisture

in late-May and early-June (Fig. 4.5).

4.5.3 Soil temperature as alternative hypothesis for circle creation

Soil temperature has been suggested as alternative hypothesis to drive ant circle creation.
Elevated soil temperature maximizes worker activity by increasing the foraging window (Bucy and
Breed, 2006), and helps incubate the brood (Wheeler, 1960; Cole, 1994). Indeed, soil temperatures inside
ant circles continuously exceeded temperatures underneath vegetation, as open areas had no canopy light
interception (Fig. 4.3b). However, observations in regional and local ant circle occurrences indicate that

the higher soil temperature is an incidental benefit, but not the driver for circle creation.

On a regional scale, the ant habitat did not extend to the warmer and drier Mojave Desert; rather it
stopped at the southern edge of the Great Basin (Fig. S4.9). Previous studies have located ant circles in
the Mojave Desert, but occurrences were localized to moist microsites (Rissing, 1988; Wagner et al.,
2004). I suggest such microsites are suitable for ant circle creation as soil moisture levels after circle
creation can sustain ant colonies. Additionally, Dibner et al. (2015) found precipitation was the only

abiotic factor significantly affecting ant circle density on a regional scale.

On a local scale, ant circle occurrence is largely confined to drainage patterns on a temperature-
wise homogenous landscape (Fig. 4.8). Drainage patterns not only provide better suited sediment for ant
nest development, but also concentrate runoff and might contain higher silt and clay contents. Sharp

boundaries in circle distribution across such landscapes as seen in Figure 4.9 could not be explained with
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the temperature hypothesis, as this area would have similar temperatures. Additionally, on the ant circle
scale, three observations were inconsistent with the temperature hypothesis. First, the benefits of
increased soil surface temperatures are also found in natural vegetation gaps, as these gaps also have no
canopy light interception and are exposed to solar heating. However, ant colonies do not occupy natural
vegetation gaps. Second, the benefit of increased soil temperature for workers only applies to the ant
circle, yet workers forage outside the ant circle (Bucy and Breed, 2006). Third, ant circles increase the
period ground temperatures are above the maximum thermal tolerance of harvester ants (Bucy and Breed,

2006).

4.5.4 Pattern persistence through vegetation change

Harvester ants are expected to be present on a landscape if two conditions are met. First,
appropriate soil moisture levels for colony survival must be sustained. Second, the vegetation must
produce suitable seeds for ants to harvest. Once they are established, ant circles can withstand vegetation
changes. Ants can continue to maintain their circles by killing seedlings that try to establish in the circle,
regardless of the vegetation type. Alternatively, new circles can be created following fire, allowing
harvester ants to populate landscapes that were previously vegetated by vegetation such as shrubs and
trees that are too large to kill (Porter and Jorgensen, 1988). Consequently, ant circles exist on forests and
shrublands as well as on annuals and grasslands (Sharp and Barr, 1960; Clark and Comanor, 1975; Wu,

1990; Carlson and Whitford, 1991; Soulé and Knapp, 1996; Dibner et al., 2015).

4.5.5 Effects of threshold crossing and climate change
Ant circles are a global phenomenon of dryland environments, occurring not only in North
America, but also in Africa (Picker et al., 2012), and the Middle East (Ginzburg et al., 2008; Brown et al.,

2012). Climate change can increase aridity in these ecosystems. Ants will cease to exist once soil moisture
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falls below their threshold. At that point, revegetation of the circle begins, first by annual vegetation, and
eventually by shrubs (Fig. 4.9). Disappearance of ant circles can negatively impact dryland ecosystems.
Ant circles increase ecosystem resiliency by promoting higher biodiversity. They function as refugia
during dry periods and accelerate post-drought recovery (Nicolai et al., 2008). Additionally, harvester ants
constitute an important part of the food chain. Ants are consumed by the horned lizard, Phrynosoma
coronatum (Suarez et al., 2000), which in turn is consumed by many large animals, including rodents,
birds, coyotes, and snakes (Munger, 1986; Sherbrooke, 2003). Ants are also food for chicks of the

endangered greater sage-grouse, Centrocercus urophasianus (Johnson and Boyce, 1990).

Climate change is expected to cause ant colony mortality if it reduces soil moisture levels.
Climate change in the southwestern United States over the past century shows an overall drying trend,
which is predicted to continue through the 21% century. Following this trend, the Mojave Desert is
predicted to extend northward (Archer and Predick, 2008; Rehfeldt et al., 2012; Bradley et al., 2016). This
will push the ant habitat range northward, leaving abandoned circles in its wake. Indeed, empty circles
and revegetated circles to varying degrees were detected in the transition zone between the Mojave Desert
and the Great Basin (Fig. 4.9). Based on the spatial pattern similarity to active circles, the empty circles
could have previously been active ant circles (Fig. 4.10). This finding is consistent with the poleward shift

in range boundaries of many species (Thomas, 2010).

Abandoned ant circles can be seen as an initial sign of ecosystem change. Initial change occurs as
a reduction in ecosystem biodiversity and loss of part of the food chain. However, loss of the vegetation
pattern does not cause rapid phase change as predicted by mathematic modeling (e.g., Sherratt and Lord,
2007). Instead, when ant circles disappear, the landscape is reverted to a homogeneous vegetation cover.
The minimum soil moisture needed by the vegetation is therefore lower than that of ant circles. This
allows vegetation to survive while ant colonies die. This contrasts with patterned vegetation, where the
pattern is dependent on the vegetation moisture requirements and therefore followed by potential

desertification if the threshold is passed. Additionally, the vegetation pattern is sometimes persevered as a
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new ecosystem engineer takes over. For example, kangaroo rat burrows were frequently encountered in
abandoned circles. If circles are maintained by another organism, the threshold value for circle occurrence
will now be determined by this organism. Understanding what drives pattern thresholds thus allows for a

better prediction of when environmental change may occur.

4.6  Conclusion

Vegetation patterns in semi-arid regions can indicate imminent ecosystem change as the system
approaches its tipping point. Understanding driving forces behind pattern formation aids in predicting
ecosystem change. Here, | showed soil moisture as a major driving force behind formation of ant circles,
a vegetation gap pattern, by the Western Harvester ant, Pogonomyrmex occidentalis. My results showed
ant circle creation increases soil moisture inside circles throughout the growing season by clearing
vegetation around the ant nest. Ant circle distribution confirmed the link to moisture patterns by being
restrained to drainage features and valleys floors, as well as regional occurrences of ant circles in the
Great Basin but not in the drier Mojave Desert. Other factors such as the effect of grain size and sediment
sorting also impact soil moisture and are presumed to be important for ant circle distribution but were not
tested. If climate change increases aridity, soil moisture levels can drop below the threshold for ant colony
survival, leading to circle abandonment. Abandoned ant circles were observed near the southern limit of
the harvester ant habitat, indicating a northward shift in habitat. Ecosystems can be negatively impacted
when harvester ants disappear by reduced biodiversity and ecosystem resilience. However, loss of
vegetation patterns created by harvester ants did not result in rapid desertification, as predicted by

mathematical models.
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Figure S4.1. Average monthly temperature and precipitation at Pioche, NV (Western Regional Climate
Center, 2023c).

142



TWashimgton e

L 4 Montaha

N o
) )
, 3 ~ = .South Dakota
= Oregon I(_iwaho ) =
. QWyoming_
° - y
(] L] R
° @ e PR ® WL o Nebraska
‘ ‘ ..‘ =
Utah o
® - Coloradol.- K(' L e
ansas
Nevada . e " e e
%. T [ 2 @
e .8 ° =
# \ OKiah
[ B ahoma
& &-Arizona ®
@’
....... New Mexico
Texas

@ Ant circles / barren circles

0 250 500 750 km
L e | NSRS AU | R

Figure S4.2. Range of ant circle and barren areas of similar dimensions and shape as ant circles in the
southwestern and western United States.

Table S4.1. Average grain size distribution for an ant circle and natural vegetation gap in annual and
shrub dominated vegetation at the research site.

Vegetation type Location Sand (%) Silt (%) Clay (%) Soil Texture
Shrub Ant circle 55.79 36.69 7.51 Sandy Loam
Shrub Vegetation gap 64.62 31.39 3.99 Sandy Loam
Annual Ant circle 47.22 46.06 6.70 Sandy Loam
Annual Vegetation gap 55.88 39.56 4.58 Sandy Loam
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Table S4.2. Gravimetric soil moisture during the growing season inside ant circles and natural vegetation
gaps on shrub and annual dominated vegetation.

Date Vegetation type Soil moisture ant Soil moisture natural
circle (%) vegetation gap (%)
May 16, 2019 Shrub 10.9 8.4
May 16, 2019 Annual 13.5 9.0
Aug 18, 2019 Shrub 8.6 5.0
Aug 18, 2019 Shrub 8.1 3.0
Aug 18, 2019 Shrub 7.7 3.9
Aug 18,2019 Annual 6.7 33
Aug 18, 2019 Annual 7.9 3.9
Aug 18, 2019 Annual 6.0 6.5
Oct 3, 2019 Shrub 6.6 4.0
Oct 3, 2019 Shrub 8.6 52
Oct 3, 2019 Shrub 7.1 4.2
Oct 3, 2019 Annual 5.5 4.6
Oct 3, 2019 Annual 8.7 34
Oct 3, 2019 Annual 8.4 43

HYDRUS set-up

Soil moisture conditions inside and outside an ant circle were simulated using the water flow and
root water uptake modules on a general three-dimensional domain to represent a triangular soil section of
4 x 1 x 1 m in xyz-dimensions. The soil domain was discretized into elements of 5 cm, leading to a total of
40,434 elements and 10,440 nodes, with the upper surface defined as meteorological boundary and the
lower surface defined as free drainage boundary (Fig. S4.3). A free drainage boundary was selected as
lower boundary as the groundwater level is located far below the domain bottom. For the upper boundary,
a value of -100,000 cm was used as hCritA, which defines the minimum pressure head allowed at the soil

surface, consistent with (Turkeltaub and Bel, 2022).
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Figure S4.3. Model domain of a three-dimensional soil slice of 400*100*100 cm in xyz-dimensions with
atmospheric boundary as upper boundary and free drainage as lower drainage.

The simulation was run with daily boundary conditions from 03/01/2019 — 09/30/2019, a total of
214 days and time variable boundary conditions. The initial model condition was measured in water
content of 14%, representing elevated soil moisture levels following snowmelt in early spring. The single-
porosity model of van Genuchten-Mualem (Van Genuchten, 1980) without hysteresis was used as
hydraulic model as the drying and wetting curves in the retention function were unknown. Soil hydraulic
parameters were either predicted using the pedo-transfer functions of the Rosetta model (Qr and Qs),
through literature search for similar soil textures with presence of soil crusts (Ks; Li et al., 2005), or
optimized through inverse modeling in HYDRUS 1D (o and n). HYDRUS 1D was also used to calculate
potential evaporation using the build-in Penman-Monteith equation. Settings for the one-dimensional
model were similar to the 3D model, except for the vertical one-dimensional domain and simulation of
only water flow. Additional meteorological parameters used as input into the model were a latitude of

38.2107, altitude (m) of 1637, measurement height of wind speed and temperature of 2 m and albedo of
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0.36. All other parameters were kept at default values. The precipitation event of day 84 (May 23, 2019)
was reduced from 32.3 mm to 5.6 mm to match the observed peak in soil moisture in the TDR data. Time-

variable meteorological data for the 1D and 3D models were obtained from a nearby weather station (Fig.

S4.4).

Table S4.3. Summary of meteorological data and vegetation and site-specific parameters, listed in units as
required by HYDRUS software.

Parameter Unit Range Mean + SD Source

(min-max)
Albedo inside - 0.35 Tetzlaff, 1983
circle
Albedo outside - 0.14 (Dirmhirn and Belt, 1971; Hanson
circle and Clayton Hanson, 2001)
Latitude degree, N 38.2107
Altitude m 1637
P50° cm -26500 Kolb & Sperry, 1999
Crop height cm 100
LAI - 0.34 Olsoy et al., 2016
Max. rooting cm 200 (Richards and Caldwell, 1987;
depth Reynolds and Fraley, 1989)
Interception mm 1.5 (West and Gifford, 1976)
hCritA™ cm -100000 (Turkeltaub and Bel, 2022)

" Pressure head at which root water uptake is reduced by 50%

™ Minimum pressure head allowed at the soil surface
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Figure S4.4. Meteorological input data used for the HYDRUS model including precipitation, minimum
and maximum temperature, wind speed, humidity, and radiation from March 1, 2019, to September 30,
2019, obtained from a weather station in Pioche, Nevada (Western Regional Climate Center, 2023c).

Soil moisture timeseries were obtained from observation nodes at locations corresponding to the
TDR sensors. The observation node inside the ant circle was placed at 0.5 m depth halfway between the
ant nest and the circle margin. The second observation node was placed at 0.5 m depth and 0.15 m from
the simulated plant. Ant circle and natural vegetation gap size were determined using the average gap

sizes at the research site using Google Earth Pro.
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Root water uptake was simulated through the Feddes water uptake reduction model with a critical
stress index of 0.8 to account for compensatory root water uptake. Root growth was not simulated.
Feddes’ parameters were obtained through the values listed in the database in HYDRUS for more drought
tolerant crop species, combined with literature values for sagebrush (Table S4.2). Root distribution
parameters were fitted to field observations (Table S4.2) to yield the root system of two plants (Fig. S4.5).
Horizontal root distribution in the Y-dimension was not specified. HYDRUS normalizes root water uptake
values prior to running its simulation and uses these values in combination with hydraulic head and

potential transpiration to calculate actual transpiration rates.

Table S4.4. Parameters for the Feddes water uptake reduction model and root distribution.

Parameter Value Notes

PO (cm) -15

Popt (cm) -25

P2H (cm) -1000

P2L (cm) -1000

P3 (cm) -26,500 (Kolb and Sperry, 1999)
R2H (cm day™) 0.5 (Simiinek et al., 2016)
R2L (cm day™) 0.1 (Simiinek et al., 2016)
Maximum Rooting depth (cm) 400 Vertical Distribution
Depth of maximum intensity (cm) 10 Vertical Distribution
Parameter Pz 20 Vertical Distribution
Maximum Rooting Radius 200 Horizontal distribution
Radius of Maximum intensity 150 Horizontal distribution
Parameter Px 0 Horizontal distribution
Center coordinate 75 Horizontal distribution
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Figure S4.5. Distribution of root water uptake (RWU) in the model domain, fit to match the root
distribution of two plants.

Figure S4.6. Satellite view of ant circles in western Utah. Individual vegetation clearings are clearly
visible, as well as ant mounds in the center of each clearing. Location = 40.002458, -112.836855.
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Figure S4.7. Precipitation and TDR readings from 5/15/2019 to 7/10/2019. a. Daily precipitation from a
weather station in Pioche, NV (Western Regional Climate Center, 2023c). b. Soil temperature at 1m
depth inside the ant circle and under vegetation on the circle margin, c. Volumetric soil moisture at 1m
depth inside the ant circle and under vegetation on the circle margin.
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Figure S4.8. Velocity vectors (water flow velocity) in the ant circle and natural vegetation gap for a. Day
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Figure S4.9. Distribution of ant circles through the western United States, showing the range in circle
distribution from Arizona and New Mexico to Montana.
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Figure S4.10. a. Example of distribution of ant circles linked to drainage features in the landscape, where
a continuously vegetated area (left) is intersected by a drainage feature (right). Ant circle occurrence is
closely related to the drainage feature, and b. generally occupies the lower parts of the landscape.
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CHAPTER 5 - CONCLUSION

The desert is a complex system containing a variety of ecosystems. Ecosystems are similar
regarding potential evapotranspiration rates far exceeding precipitation. However, responses to climate
change might differ. In my dissertation, I studied the effects of climate change on three different
ecosystems in the (semi)-arid southwestern United States that are considered amongst the most vulnerable
ecosystems to climate change: lacustrine, riparian, and dryland ecosystems. This approach allowed for

comparison of the sensitivity to climate change in (semi)-arid ecosystems.

Ecosystems contain tipping points at which environmental stress passes a threshold, and the
system rapidly shifts to an alternative stable state. The responses of three (semi)-arid ecosystems to
climate change differed. Lacustrine ecosystems of large volume and inflow of high-quality water, such as
Lake Mead, showed minimum responses to climate change. Water quality parameters such as temperature
and nutrients, and phytoplankton community structures did not significantly change since the early 2000s.
This chapter highlighted the buffering capacity of large, oligotrophic reservoirs to maintain stable water
quality. Changes in phytoplankton structures did occur once this buffering capacity was passed, most

noticeable in shallow areas near river inflows where water temperature or nutrients had increased.

Dryland ecosystems containing vegetation patterns created by the harvester ant, Pogonomyrmex
occidentalis, showed intermediate sensitivity to climate change. In this chapter, I studied soil moisture as
driver for pattern creation, which is needed to meet the minimum moisture requirements for ant colony
survival. Increased aridity caused by climate change can drop minimum soil moisture levels below the
threshold moisture required for harvester ants. I showed evidence of a northward shift in harvester ant
distribution, evident from abandoned ant circles in the southern part of their distribution. While loss of ant
circles reduced biodiversity and ecosystem resilience to change, ecosystem response differed from

responses predicted from mathematical models. After circle abandonment, vegetation gaps slowly got
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revegetated, instead of a total ecosystem collapse leading to desertification. Understanding the driver of

vegetation pattern formation thus allows for better prediction of ecosystem change and severity of change.

Riparian ecosystems in the southwestern United States were most sensitive to climate change. In
this chapter, I introduced a mechanism of how a sequence of extreme hydrological events, intense drought
and flooding, caused riparian woodland mortality at sites in Nevada and California. Intensified drought
conditions can reduce shallow root activity, affecting the ability of riparian trees to deal with high
groundwater levels in wet years. Riparian woodland mortality is expected to occur globally in areas
experiencing increases in drought intensity. Loss of riparian tree species can negatively impact riparian
ecosystems as riparian woodlands harbor large biodiversity, improve water quality, and aid in erosion and

flood control.

The work presented in this dissertation has shown how responses to climate change can be highly
ecosystem dependent. Ecosystems in similar climatic zones can respond vastly different to environmental
change owing to intrinsic differences in ecosystems, such as the presence of vegetation patterns or

reservoir volume.
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